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C h a p t e r T e n

Noise and Nonlinear Distortion

The effect of noise is critical to the performance of most RF and microwave communica-
tions, radar, and remote sensing systems because noise ultimately determines the threshold for
the minimum signal that can be reliably detected by a receiver. Noise power in a receiver will
be introduced from the external environment through the receiving antenna, as well as gen-
erated internally by the receiver circuitry. Here we will study the sources of noise in RF and
microwave systems, and the characterization of components in terms of noise temperature and
noise figure, including the effect of impedance mismatch. The additional noise-related topics
of transistor amplifier noise figure, oscillator phase noise, and antenna noise temperature will
be discussed in later chapters.

We will also discuss the related topics of compression, harmonic distortion, intermodula-
tion distortion, and dynamic range. These can have important limiting effects when large signal
levels are present in mixers, amplifiers, and other components that use nonlinear devices such
as diodes and transistors.

10.1 NOISE IN MICROWAVE CIRCUITS

Noise power is a result of random processes such as the flow of charges or holes in an
electron tube or solid-state device, propagation through the ionosphere or other ionized
gas, or, most basic of all, the thermal vibrations in any component at a temperature above
absolute zero. Noise can be passed into a microwave system from external sources, or gen-
erated within the system itself. In either case the noise level of a system sets the lower
limit on the strength of a signal that can be detected in the presence of the noise. Thus,
it is generally desired to minimize the residual noise level of a radar or communications
receiver to achieve the best performance. In some cases, such as radiometers or radio as-
tronomy systems, the desired signal is actually the noise power received by an antenna,
and it is necessary to distinguish between the received noise power and the undesired noise
generated by the receiver system itself.
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FIGURE 10.1 Illustrating the dynamic range of a realistic amplifier.

Dynamic Range and Sources of Noise

In previous chapters we have implicitly assumed that all components were linear (meaning
that the output signal level is directly proportional to the input signal level), and determin-
istic (meaning that the output signal is predictable from the input signal). In reality no
component can perform in this way over an unlimited range of input/output signal levels.
In practice, however, there is usually a range of signal levels over which such assumptions
are approximately valid; this range is called the dynamic range of the component.

As an example, consider a realistic microwave transistor amplifier having a power gain
G, as shown in Figure 10.1. If the amplifier were ideal, the output power would be related
to the input power as Pout = GPin, and this relation would hold true for any value of Pin.
Thus, if Pin = 0, we would have Pout = 0, and if Pin = 106 W and G = 10 dB, we would
have Pout = 107 W. Neither of these results would actually occur in practice, however.
Because of noise generated by the amplifier itself, some nonzero noise power will always
be delivered by the amplifier, even when the input power is zero. At the other extreme,
very high input power will cause the amplifier to fail. Thus, the actual relation between the
output and input power will be as shown in Figure 10.1. At very low input power levels,
the output will be dominated by the noise generated by the amplifier. This level is often
called the noise floor of the component or system; typical values may range from −80
to −140 dBm over the bandwidth of the system, with the lowest values being obtained
with thermally cooled components. Above the noise floor, the amplifier will have a range
of input power for which Pout = GPin is closely approximated. This is the usable dynamic
range of the component. At the upper end of this range, the output will begin to saturate,
meaning that the output power no longer increases linearly as the input power increases.
Excessive input power will lead to failure of the amplifier.

Noise that is generated internally in a device or component is usually caused by ran-
dom motions of charges or charge carriers in devices and materials. Such motions may be
due to any of several mechanisms, leading to various types of noise:

� Thermal noise is the most basic type of noise, being caused by thermal vibration of
bound charges. It is also known as Johnson or Nyquist noise.

� Shot noise is due to random fluctuations of charge carriers in an electron tube or
solid-state device.

� Flicker noise occurs in solid-state components and vacuum tubes. Flicker noise
power varies inversely with frequency, and so is often called 1/ f -noise.



c10NoiseAndNonlinearDistortion Pozar August 26, 2011 15:49

498 Chapter 10: Noise and Nonlinear Distortion

� Plasma noise is caused by random motion of charges in an ionized gas, such as a
plasma, the ionosphere, or sparking electrical contacts.

� Quantum noise results from the quantized nature of charge carriers and photons; it
is often insignificant relative to other noise sources.

External noise may be introduced into a system either by a receiving antenna or by
electromagnetic coupling. Some sources of external RF noise include the following:

� Thermal noise from the ground
� Cosmic background noise from the sky
� Noise from stars (including the sun)
� Lightning
� Gas discharge lamps
� Radio, TV, and cellular stations
� Wireless devices
� Microwave ovens
� Deliberate jamming devices

The characterization of noise effects in RF and microwave systems in terms of noise
temperature and noise figure will apply to all types of noise, regardless of the source, as
long as the spectrum of the noise is relatively flat over the bandwidth of the system. Noise
with a flat frequency spectrum is called white noise.

Noise Power and Equivalent Noise Temperature

Consider a resistor at a physical temperature of T degrees kelvin (K), as depicted in Figure
10.2. The electrons in the resistor are in random motion, with a kinetic energy that is
proportional to the temperature. These random motions produce small, random voltage
fluctuations at the resistor terminals, as illustrated in Figure 10.2. This voltage has a zero
average value but a nonzero root mean square (rms) value given by Planck’s blackbody
radiation law,

Vn =
√

4h f BR

eh f/kT − 1
, (10.1)

where
h = 6.626 × 10−34 J-sec is Planck’s constant.
k = 1.380 × 10−23 J/K is Boltzmann’s constant.
T = the temperature in degrees kelvin (K).
B = the bandwidth of the system in Hz.
f = the center frequency of the bandwidth in Hz.
R = the resistance in �.

T°K

R v(t)

v(t)

t

FIGURE 10.2 A random voltage generated by a noisy resistor.
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FIGURE 10.3 Equivalent circuit of a noisy resistor delivering maximum power to a load resistor
through an ideal bandpass filter.

This result comes from quantum mechanical considerations, and is valid for any frequency
f . At microwave frequencies the above result can be simplified by making use of the fact
that h f � kT . (As a worst-case example, let f = 100 GHz and T = 100 K. Then h f =
6.6 × 10−23 � kT = 1.4 × 10−21.) Using the first two terms of a Taylor series expansion
for the exponential in (10.1) gives

eh f/kt − 1 � h f

kT
,

so that (10.1) reduces to

Vn = √
4kTBR. (10.2)

This is the Rayleigh–Jeans approximation, and is the result that is most commonly used
in microwave work [1]. For very high frequencies or very low temperatures, however, this
approximation may be invalid, in which case (10.1) should be used.

The noisy resistor of Figure 10.2 can be replaced with a Thevenin equivalent circuit
consisting of a noiseless resistor and a generator with a voltage given by (10.2), as shown
in Figure 10.3. Connecting a load resistor R results in maximum power transfer from the
noisy resistor, with the result that power delivered to the load in a bandwidth B is

Pn =
(

Vn

2R

)2

R = V 2
n

4R
= kTB, (10.3)

since Vn is an rms voltage. This important result gives the maximum available noise power
from the noisy resistor at temperature T . Note that this noise power is independent of
frequency; such a noise source has a power spectral density that is constant with frequency,
and is an example of a white noise source. The noise power is directly proportional to the
bandwidth, which in practice is usually limited by the passband of the RF or microwave
system. Independent white noise sources can be treated as Gaussian-distributed random
variables, so the noise powers (variances) of independent noise sources are additive.

The following trends can be observed from (10.3):

� As B → 0, Pn → 0. This means that systems with smaller bandwidths collect less
noise power.

� As T → 0, Pn → 0. This means that cooler devices and components generate less
noise power.

� As B → ∞, Pn → ∞. This is the so-called ultraviolet catastrophe, which does not
occur in reality because (10.2)–(10.3) are not valid as f (or B) → ∞; (10.1) must
be used in this case.

If an arbitrary source of noise (thermal or nonthermal) is “white,” so that the noise
power is not a strong function of frequency over the bandwidth of interest, it can be mod-
eled as an equivalent thermal noise source, and characterized with an equivalent noise
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FIGURE 10.4 The equivalent noise temperature, Te, of an arbitrary white noise source.

temperature. Thus, consider the arbitrary white noise source of Figure 10.4, which has a
driving-point impedance of R and delivers a noise power No to a load resistor R. This
noise source can be replaced by a noisy resistor of value R at temperature Te, where Te is
an equivalent temperature selected so that the same noise power is delivered to the load.
That is,

Te = No

k B
. (10.4)

Components and systems can then be characterized by saying that they have an equiva-
lent noise temperature Te; this implies some fixed bandwidth B, which is generally the
operational bandwidth of the component or system.

For example, consider a noisy amplifier with a bandwidth B and gain G. Let the am-
plifier be matched to noiseless source and load resistors, as shown in Figure 10.5. If the
source resistor is at a (hypothetical) temperature of Ts = 0 K , then the input power to the
amplifier will be Ni = 0, and the output noise power No will be due only to the noise gen-
erated by the amplifier itself. We can obtain the same load noise power by driving an ideal
noiseless amplifier with a resistor at the temperature

Te = No

Gk B
, (10.5)

so that the output power in both cases is No = GkTe B. Then Te is the equivalent noise
temperature of the amplifier.

It is sometimes useful for measurement purposes to have a calibrated noise source. A
passive noise source may simply consist of a resistor held at a constant temperature, either

R R
Noisy
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R R
Noiseless
amplifier
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No = GkTeB

No

G
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(a)
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Te = GkB

FIGURE 10.5 Defining the equivalent noise temperature of a noisy amplifier. (a) Noisy amplifier.
(b) Noiseless amplifier.
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in a temperature-controlled oven, or in a cryogenic flask. Active noise sources may use a
diode, transistor, or tube to provide a calibrated noise power output. Noise generators can
be characterized by an equivalent noise temperature, but a more common measure of noise
power for such components is the excess noise ratio (ENR), defined as

ENR (dB) = 10 log
Ng − No

No
= 10 log

Tg − T0

T0
, (10.6)

where Ng and Tg are the noise power and equivalent noise temperature of the generator,
and No and T0 are the noise power and temperature associated with a room-temperature
(T0 = 290 K) passive source (a matched load). Solid-state noise generators typically have
ENRs ranging from 20 to 40 dB.

Measurement of Noise Temperature

In principle, the equivalent noise temperature of a component can be determined by mea-
suring the output power when a matched load at 0 K is connected at the input of the com-
ponent. In practice, of course, a 0 K source temperature cannot be obtained, so a different
method must be used. If two matched loads at significantly different temperatures are avail-
able, then the Y -factor method can be applied.

This technique is illustrated in Figure 10.6, where the amplifier (or other component)
under test is connected to one of two matched loads at different temperatures, and the
output power is measured for each case. Let T1 be the temperature of the hot load and
T2 the temperature of the cold load (T1 > T2), and let P1 and P2 be the respective powers
measured at the amplifier output. The output noise power consists of noise power generated
by the amplifier as well as noise power from the source resistor. Thus we have

N1 = GkT1 B + GkTe B, (10.7a)

N2 = GkT2 B + GkTe B, (10.7b)

which are two equations for the two unknowns, Te and GB (the gain–bandwidth product of
the amplifier). Define the Y -factor as

Y = N1

N2
= T1 + Te

T2 + Te
> 1, (10.8)

which is determined as the ratio of the output power measurements. Then (10.7) can be
solved for the equivalent noise temperature of the device under test as

Te = T1 − Y T2

Y − 1
, (10.9)

in terms of the load temperatures and the Y -factor.

R

R

T1(hot)

T2(cold)
G, B,

Te

N1,
N2

FIGURE 10.6 The Y -factor method for measuring the equivalent noise temperature of an
amplifier.
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Note that to obtain accurate results from this method, the two source temperatures
must not be too close together. If they are, N1 will be close to N2, Y will be close to unity,
and the evaluation of (10.9) will involve the subtractions of numbers close to each other,
resulting in a loss of accuracy. In practice, one noise source is usually a load resistor at
room temperature (T0 = 290 K), while the other noise source is either “hotter” or “colder,”
depending on whether Te is greater or less than T0. An active noise generator can be used
as a “hot” source, while a “cold” source can be obtained by immersing a load resistor in
liquid nitrogen (T = 77 K) or liquid helium (T = 4 K).

EXAMPLE 10.1 NOISE TEMPERATURE MEASUREMENT

An X-band amplifier has a gain of 20 dB and a 1 GHz bandwidth. Its equivalent
noise temperature is to be measured via the Y -factor method. The following data
are obtained:

For T1 = 290 K, N1 = −62.0 dBm.

For T2 = 77 K, N2 = −64.7 dBm.

Determine the equivalent noise temperature of the amplifier. If the amplifier is
used with a source having an equivalent noise temperature of Ts = 450 K, what
is the output noise power from the amplifier, in dBm?

Solution
From (10.8), the Y -factor in dB is

Y = (N1 − N2) dB = (−62.0) − (−64.7) = 2.7 dB,

which is a numeric value of Y = 1.86. Using (10.9) gives the equivalent noise
temperature as

Te = T1 − Y T2

Y − 1
= 290 − (1.86)(77)

1.86 − 1
= 170 K.

If a source with an equivalent noise temperature of Ts = 450 K drives the
amplifier, the noise power into the amplifier will be kTs B. The total noise power
out of the amplifier will be

No = GkTs B + GkTe B = 100(1.38 × 10−23)(109)(450 + 170)

= 8.56 × 10−10 W = −60.7 dBm. ■

10.2 NOISE FIGURE

Definitio of Noise Figure

We have seen that a noisy microwave component can be characterized by an equivalent
noise temperature. An alternative characterization is the noise figure of the component,
which is a measure of the degradation in the signal-to-noise ratio between the input and
output of the component. The signal-to-noise ratio is the ratio of desired signal power to
undesired noise power, and so is dependent on the signal power. When noise and a desired
signal are applied to the input of a noiseless network, both noise and signal will be atten-
uated or amplified by the same factor, so that the signal-to-noise ratio will be unchanged.
However, if the network is noisy, the output noise power will be increased more than the
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FIGURE 10.7 Determining the noise figure of a noisy network.

output signal power, so that the output signal-to-noise ratio will be reduced. The noise
figure, F , is a measure of this reduction in signal-to-noise ratio, and is defined as

F = Si/Ni

So/No
≥ 1, (10.10)

where Si , Ni are the input signal and noise powers, and So, No are the output signal and
noise powers. By definition, the input noise power is assumed to be the noise power result-
ing from a matched resistor at T0 = 290 K; that is, Ni = kT0 B.

Consider Figure 10.7, which shows noise power Ni and signal power Si being fed
into a noisy two-port network. The network is characterized by a gain, G, a bandwidth,
B, and an equivalent noise temperature, Te. The input noise power is Ni = kT0 B, and the
output noise power is a sum of the amplified input noise and the internally generated noise:
No = kGB(T0 + Te). The output signal power is So = GSi . Using these results in (10.10)
gives the noise figure as

F = Si

kT0 B

kGB(T0 + Te)

GSi
= 1 + Te

T0
≥ 1. (10.11)

In dB, F = 10 log(1 + Te/T0) dB ≥ 0. If the network were noiseless, Te would be zero,
giving F = 1, or 0 dB. Solving (10.11) for Te gives

Te = (F − 1)T0. (10.12)

It is important to keep in mind two things concerning the definition of noise figure: noise
figure is defined for a matched input source, and for a noise source equivalent to a matched
load at temperature T0 = 290 K. Noise figure and equivalent noise temperatures are inter-
changeable characterizations of the noise properties of a component.

An important special case occurs in practice for a two-port network consisting of a
passive, lossy component, such as an attenuator or lossy transmission line, held at a phys-
ical temperature T . Consider such a network with a matched source resistor that is also at
temperature T , as shown in Figure 10.8. The power gain, G, of a lossy network is less than
unity; the loss factor, L , can be defined as L = 1/G > 1. Because the entire system is in
thermal equilibrium at the temperature T , and has a driving point impedance of R, the out-
put noise power must be No = kTB. However, we can also think of this power as coming
from the source resistor (attenuated by the lossy line), and from the noise generated by the
line itself. Thus we also have that

No = kTB = GkTB + G Nadded, (10.13)

where Nadded is the noise generated by the line, as if it appeared at the input terminals of
the line. Solving (10.13) for this power gives

Nadded = 1 − G

G
kTB = (L − 1)kTB. (10.14)
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FIGURE 10.8 Determining the noise figure of a lossy line or attenuator with loss L and tempera-
ture T .

Then (10.4) shows that the lossy line has an equivalent noise temperature (referred to the
input) given by

Te = 1 − G

G
T = (L − 1)T . (10.15)

From (10.11) the noise figure is

F = 1 + (L − 1)
T

T0
. (10.16)

If the line is at temperature T0, then F = L . For instance, a 6 dB attenuator at room tem-
perature has a noise figure of F = 6 dB.

Noise Figure of a Cascaded System

In a typical microwave system the input signal travels through a cascade of many different
components, each of which may degrade the signal-to-noise ratio to some degree. If we
know the noise figure (or noise temperature) of the individual stages, we can determine the
noise figure (or noise temperature) of the cascade connection of stages. We will see that
the noise performance of the first stage is usually the most critical, an interesting result that
is very important in practice.

Consider the cascade of two components, having gains G1, G2, noise figures F1, F2,
and equivalent noise temperatures Te1, Te2, as shown in Figure 10.9. We wish to find the
overall noise figure and equivalent noise temperature of the cascade, as if it were a single
component. The overall gain of the cascade is G1G2.

Using noise temperatures, we can write the noise power at the output of the first
stage as

N1 = G1kT0 B + G1kTe1 B, (10.17)

G1
F1
Te1

G2
F2
Te2

G1G2
Fcas
Tecas

Ni No

No

T0

Ni

T0

N1

(a)

(b)

FIGURE 10.9 Noise figure and equivalent noise temperature of a cascaded system. (a) Two cas-
caded networks. (b) Equivalent network.
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since Ni = kT0 B for noise figure calculations. The noise power at the output of the second
stage is

No = G2 N1 + G2kTe2 B

= G1G2k B

(
T0 + Te1 + 1

G1
Te2

)
. (10.18)

For the equivalent system we have

No = G1G2k B(Tcas + T0), (10.19)

so comparison with (10.18) gives the noise temperature of the cascade system as

Tcas = Te1 + 1

G1
Te2. (10.20)

Using (10.12) to convert the temperatures in (10.20) to noise figures yields the noise figure
of the cascade system as

Fcas = F1 + 1

G1
(F2 − 1). (10.21)

Equations (10.20) and (10.21) show that the noise characteristics of a cascaded system
are dominated by the characteristics of the first stage since the effect of the second stage
is reduced by the gain of the first (assuming G1 > 1). Thus, for the best overall system
noise performance, the first stage should have a low noise figure and at least moderate
gain. Expense and effort should be devoted primarily to the first stage, as opposed to later
stages, since later stages have a diminished impact on the overall noise performance.

Equations (10.20) and (10.21) can be generalized to an arbitrary number of stages, as
follows:

Tcas = Te1 + Te2

G1
+ Te3

G1G2
+ · · · , (10.22)

Fcas = F1 + F2 − 1

G1
+ F3 − 1

G1G2
+ · · · . (10.23)

EXAMPLE 10.2 NOISE ANALYSIS OF A WIRELESS RECEIVER

The block diagram of a wireless receiver front-end is shown in Figure 10.10.
Compute the overall noise figure of this subsystem. If the input noise power from
a feeding antenna is Ni = kTA B, where TA = 150 K, find the output noise power
in dBm. If we require a minimum signal-to-noise ratio (SNR) of 20 dB at the
output of the receiver, what is the minimum signal voltage that should be applied

Low noise
amplifier

Bandpass
filter Mixer

Ga = 10 dB
Fa = 2 dB

Lm = 3 dB
Fm = 4 dB

Si, Ni So, No

Lf  = 1 dB

FIGURE 10.10 Block diagram of a wireless receiver front-end for Example 10.2.
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at the receiver input? Assume the system is at temperature T0, with a characteristic
impedance of 50 �, and an IF bandwidth of 10 MHz.

Solution
We first perform the required conversions from dB to numerical values:

Ga = 10 dB = 10 G f = −1.0 dB = 0.79 Gm = −3.0 dB = 0.5

Fa = 2 dB = 1.58 F f = 1 dB = 1.26 Fm = 4 dB = 2.51

Next, use (10.23) to find the overall noise figure of the system:

F = Fa + F f − 1

Ga
+ Fm − 1

GaG f
= 1.58 + (1.26 − 1)

10
+ (2.51 − 1)

(10)(0.79)

= 1.80 = 2.55 dB.

The best way to compute the output noise power is to use noise temperatures.
From (10.12), the equivalent noise temperature of the overall system is

Te = (F − 1)T0 = (1.80 − 1)(290) = 232 K.

The overall gain of the system is G = (10)(0.79)(0.5) = 3.95. Then we can find
the output noise power as

No = k(TA + Te)BG = (1.38 × 10−23)(150 + 232)(10 × 106)(3.95)

= 2.08 × 10−13 W = −96.8 dBm.

For an output SNR of 20 dB = 100, the input signal power must be

Si = So

G
= So

No

No

G
= 100

2.08 × 10−13

3.95
= 5.27 × 10−12 W = −82.8 dBm.

For a 50 � system impedance, this corresponds to an input signal voltage of

Vi = √
ZoSi =

√
(50)(5.27 × 10−12) = 1.62 × 10−5 V = 16.2 µV (rms).

Note: It may be tempting to compute the output noise power from the definition
of the noise figure, as

No = Ni F

(
So

Si

)
= Ni FG = kTA BFG

= (1.38 × 10−23)(150)(10 × 106)(1.8)(3.95) = 1.47 × 10−13 W.

This is an incorrect result! The reason for the disparity with the earlier result is
that the definition of noise figure assumes an input noise level of kT0 B, while
this problem involves an input noise of kTA B, with TA = 150 K �= T0. This is a
common error, and suggests that when computing absolute noise power it is often
safer to use noise temperatures to avoid this confusion. ■

Noise Figure of a Passive Two-Port Network

We previously derived the noise figure for a matched lossy line or attenuator by using a
thermodynamic argument. Here we generalize that technique to evaluate the noise figure
of general passive networks (networks that do not contain active devices such as diodes or
transistors, which generate nonthermal noise). In addition, this method will account for the
change in noise figure that occurs when a component is impedance mismatched at either its
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FIGURE 10.11 A passive two-port network with impedance mismatches. The network is at phys-
ical temperature T .

input or output port. Generally it is easier and more accurate to find the noise characteristics
of an active device, such as a diode or transistor, by direct measurement than by calculation
from first principles.

Figure 10.11 shows an arbitrary passive two-port network, with a generator at port 1
and a load at port 2. The network is characterized by its scattering matrix, [S]. In the general
case, impedance mismatches may exist at each port, and we define these mismatches in
terms of the following reflection coefficients:

�s = reflection coefficient looking toward generator,

�in = reflection coefficient looking toward port 1 of network,

�out = reflection coefficient looking toward port 2 of network,

�L = reflection coefficient looking toward load.

If we assume the network is at temperature T , and that an available input noise power of
N1 = kTB is applied to the input of the network, we can write the available output noise
power at port 2 as

N2 = G21kTB + G21 Nadded, (10.24)

where Nadded is the noise power generated internally by the network (referenced to port 1),
and G21 is the available power gain of the network from port 1 to port 2. The available
power gain can be expressed in terms of the scattering parameters of the network and the
port mismatches as (also see Section 12.1),

G21 = power available from network

power available from source
= |S21|2(1 − |�S|2)

|1 − S11�S|2(1 − |�out|2) . (10.25)

As derived in Example 4.7, the output port mismatch is given by

�out = S22 + S12S21�S

1 − S11�S
. (10.26)

Observe that when the network is matched to its external circuitry, so that �s = 0 and
S22 = 0, we have �out = 0 and G21 = |S21|2, which is the gain of the network when it is
matched. Also observe that the available gain of the network does not depend on the load
mismatch, �L. This is because available gain is defined in terms of the maximum power
that is available from the network, which occurs when the load impedance is conjugately
matched to the output impedance of the network.

Since the input noise power is kTB, and the network is passive and at temperature T ,
the network is in thermodynamic equilibrium, and so the available output noise power must
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be N2 = kTB. Then we can solve for Nadded from (10.24) to give

Nadded = 1 − G21

G21
kTB. (10.27)

Then the equivalent noise temperature of the network is

Te = Nadded

k B
= 1 − G21

G21
T, (10.28)

and the noise figure of the network is

F = 1 + Te

T0
= 1 + 1 − G21

G21

T

T0
. (10.29)

Note the similarity of (10.27)–(10.29) to the results in (10.14)–(10.16) for the lossy line—
the essential difference is that here we are using the available gain of the network, which
accounts for impedance mismatches between the network and the external circuit. We can
illustrate the use of this result with some applications to problems of practical interest.

Noise Figure of a Mismatched Lossy Line

Earlier we found the noise figure of a lossy transmission line under the assumption that
it was matched to its input and output circuits. Now we consider the case where the line
is mismatched to its input circuit. Figure 10.12 shows a transmission line of length � at
temperature T , with a power loss factor L = 1/G, and an impedance mismatch between
the line and the generator. Thus, Zg �= Z0, and the reflection coefficient looking toward the
generator is

�s = Zg − Z0

Zg + Z0
�= 0.

The scattering matrix of the lossy line of characteristic impedance Z0 can be written as

[S] =
[

0 1
1 0

]
e− jβ�

√
L

, (10.30)

where β is the propagation constant of the line. Using the elements of (10.30) in (10.26)
gives the reflection coefficient looking into port 2 of the line as

�out = S22 + S12S21�s

1 − S11�s
= �s

L
e−2 jβ�. (10.31)

�

FIGURE 10.12 A lossy transmission line at temperature T with an impedance mismatch at its
input port.
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Then the available gain, from (10.25), is

G21 =
1

L
(1 − |�s |2)

1 − |�out|2 = L(1 − |�s |2)
L2 − |�s |2 . (10.32)

We can verify two limiting cases of (10.32): when L = 1 we have G21 = 1, and when
�s = 0 we have G21 = 1/L . Using (10.32) in (10.28) gives the equivalent noise tempera-
ture of the mismatched lossy line as

Te = 1 − G21

G21
T = (L − 1)(L + |�s |2)

L(1 − |�s |2) T . (10.33)

The corresponding noise figure can then be evaluated using (10.11). Observe that when
the line is matched, �s = 0, and (10.33) reduces to Te = (L − 1)T , in agreement with the
result for the matched lossy line given by (10.15). If the line is lossless, then L = 1, and
(10.33) reduces to Te = 0 regardless of mismatch, as expected. However, when the line is
lossy and mismatched, so that L > 1 and |�s | > 0, then the noise temperature given by
(10.33) is greater than Te = (L − 1)T , the noise temperature of the matched lossy line.
The reason for this increase is that the lossy line actually delivers noise power out of both
its ports, but when the input port is mismatched some of the available noise power at port
1 is reflected from the source back into port 1 and appears at port 2. When the generator is
matched to port 1, none of the available power from port 1 is reflected back into the line,
so the noise power available at port 2 is a minimum. This result implies that impedance
matching is important in minimizing noise temperature and noise figure.

EXAMPLE 10.3 APPLICATION TO A WILKINSON POWER DIVIDER

Find the noise figure of a Wilkinson power divider when one of the output ports is
terminated in a matched load. Assume an insertion loss factor of L from the input
to either output port.

Solution
From Chapter 7 the scattering matrix of a Wilkinson divider is given as

[S] = − j√
2L

[ 0 1 1
1 0 0
1 0 0

]
,

where the factor L ≥ 1 accounts for the dissipative loss from port 1 to port 2 or
3 (note that dissipative loss is distinct from the −3 dB power division ratio). To
evaluate the noise figure of the Wilkinson divider, we first terminate port 3 with
a matched load; this converts the three-port device into a two-port device. If we
assume a matched source at port 1, we have �s = 0. Equation (10.26) then gives
�out = S22 = 0, and so the available gain can be calculated from (10.25) as

G21 = |S21|2 = 1

2L
.

The equivalent noise temperature of the Wilkinson divider is, from (10.28),

Te = 1 − G21

G21
T = (2L − 1)T,
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where T is the physical temperature of the divider. Using (10.11) gives the noise
figure as

F = 1 + Te

T0
= 1 + (2L − 1)

T

T0
.

Observe that if the divider is at room temperature, then T = T0 and the above
reduces to F = 2L . If the divider is at room temperature and lossless, this reduces
to F = 2 = 3 dB. In this case the source of the noise power is the isolation resistor
contained in the Wilkinson divider circuit.

Because the network is matched at its input and output, it is easy to obtain
these same results using the thermodynamic argument directly. Thus, if we apply
an input noise power of kTB to port 1 of the matched divider at temperature T , the
system will be in thermal equilibrium and the output noise power must be kTB.
We can also express the output noise power as the sum of the input power times
the gain of the divider, and Nadded, the noise power added by the divider itself
(referenced to the input to the divider):

kTB = kTB

2L
+ Nadded

2L
.

Solving for Nadded gives Nadded = kTB(2L − 1), so the equivalent noise temper-
ature is

Te = Nadded

k B
= (2L − 1)T,

in agreement with the above. ■

Noise Figure of a Mismatched Amplifie

Finally, consider the effect of an input impedance mismatch on the noise figure of an ampli-
fier. As shown in Figure 10.13, the amplifier, when matched, has a gain G, a noise figure F ,
and a bandwidth B. The amplifier output is matched, but there is an impedance mismatch
at the input represented by the reflection coefficient, �. Our previous results involving the
effect of mismatch on noise figure made use of (10.29), but that was derived for a passive
network and so cannot be directly used in this case. Instead we will use noise temperatures.

Since we are dealing with noise figure, let the input noise power to the amplifier be
Ni = kT0 B. Then the output noise power from the amplifier (referenced to the input) is
given by

No = kT0GB
(
1 − |�|2) + kT0 (F − 1) GB (10.34)

where the first term is due to the input noise power, decreased by the reflection at the input,
and the second term is the noise power due to the amplifier itself, based on the equivalent
noise temperature as given by (10.12). For an applied signal power Si , the output signal

So + NoSi + Ni

Z0

Z0 
G, F, 

B
�

FIGURE 10.13 A noisy amplifier with an impedance mismatch at its input.
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power is

So = G
(
1 − |�|2)Si . (10.35)

The overall noise figure, Fm , of the mismatched amplifier can be found from (10.10) as

Fm = Si No

So Ni
= 1 + F − 1

1 − |�|2 . (10.36)

Observe from (10.36) the limiting case that Fm = F when |�| = 0 (no mismatch), and
that this is the minimum noise figure that can be achieved since Fm increases as the mis-
match increases. This result demonstrates that good noise figure requires good impedance
matching. This problem would be more complicated if a mismatch also existed at the out-
put of the amplifier, particularly if the amplifier is not unilateral.

10.3 NONLINEAR DISTORTION

We have seen that thermal noise is generated by any lossy component. Since all realistic
components have at least a small loss, the ideal linear component does not exist in practice
because all realistic devices are nonlinear at very low signal levels due to noise effects.
In addition, practical components may also become nonlinear at high signal levels. In the
case of active devices, such as diodes and transistors, this may be due to effects such as
gain compression or the generation of spurious frequency components due to device non-
linearities, but all devices ultimately fail at very high power levels. In either case, these
effects set a minimum and maximum realistic power range, or dynamic range, over which
a given component or network will operate as desired. In this section we will study the re-
sponse of nonlinear devices in general, and two definitions of dynamic range. These results
will be useful for our later discussions of amplifiers (Chapter 12), mixers (Chapter 13), and
wireless receivers (Chapter 14).

Devices such as diodes and transistors have nonlinear characteristics, and it is this
nonlinearity that is of great utility for desirable functions such as amplification, detection,
and frequency conversion [2]. Nonlinear device characteristics, however, can also lead to
undesirable effects such as gain compression and the generation of spurious frequency
components. These effects may lead to increased losses, signal distortion, and possible
interference with other radio channels or services. Some of the many possible effects of
nonlinearity in RF and microwave circuits are listed below [3]:

� Harmonic generation (multiples of a fundamental signal)
� Saturation (gain reduction in an amplifier)
� Intermodulation distortion (products of a two-tone input signal)
� Cross-modulation (modulation transfer from one signal to another)
� AM-PM conversion (amplitude variation causes phase shift)
� Spectral regrowth (intermodulation with many closely spaced signals)

Figure 10.14 shows a general nonlinear network, having an input voltage vi and an
output voltage vo. In the most general sense, the output response of a nonlinear circuit can

FIGURE 10.14 A general nonlinear device or network.



c10NoiseAndNonlinearDistortion Pozar September 15, 2011 17:17

512 Chapter 10: Noise and Nonlinear Distortion

be modeled as a Taylor series in terms of the input signal voltage:

vo = a0 + a1vi + a2v
2
i + a3v

3
i + · · · , (10.37)

where the Taylor coefficients are defined as

a0 = vo(0) (DC output) (10.38a)

a1 = dvo

dvi

∣∣∣∣
vi=0

(linear output) (10.38b)

a2 = d2vo

dv2
i

∣∣∣∣∣
vi=0

(squared output) (10.38c)

and higher order terms. Different functions can be obtained from the nonlinear network
depending on the dominance of particular terms in the expansion. The constant term, with
coefficient a0, in (10.37) leads to rectification, converting an AC input signal to DC. The
linear term, with coefficient a1, models a linear attenuator (a1 < 1) or amplifier (a1 > 1).
The second-order term, with coefficient a2, can be used for mixing and other frequency
conversion functions. Practical nonlinear devices usually have a series expansion contain-
ing many nonzero terms, and a combination of several of the above effects will occur. We
will consider some important special cases below.

Gain Compression

First consider the case where a single-frequency sinusoid is applied to the input of a general
nonlinear network, such as an amplifier:

vi = V0 cos ω0t. (10.39)

Equation (10.37) gives the output voltage as

vo = a0 + a1V0 cos ω0t + a2V 2
0 cos2 ω0t + a3V 3

0 cos3 ω0t + · · ·

=
(

a0 + 1

2
a2V 2

0

)
+

(
a1V0 + 3

4
a3V 3

0

)
cos ω0t + 1

2
a2V 2

0 cos 2ω0t

+ 1

4
a3V 3

0 cos 3ω0t + · · · . (10.40)

This result leads to the voltage gain of the signal component at frequency ω0:

Gv = v
(ω0)
o

v
(ω0)
i

= a1V0 + 3
4a3V 3

0

V0
= a1 + 3

4
a3V 2

0 , (10.41)

where we have retained only terms through the third order.
The result of (10.41) shows that the voltage gain is equal to a1, the coefficient of the

linear term, as expected, but with an additional term proportional to the square of the input
voltage amplitude. In most practical amplifiers a3 typically has the opposite sign of a1, so
that the output of the amplifier tends to be reduced from the expected linear dependence
for large values of V0. This effect is called gain compression, or saturation. Physically, this
is usually due to the fact that the instantaneous output voltage of an amplifier is limited by
the power supply voltage used to bias the active device.
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FIGURE 10.15 Definition of the 1 dB compression point for a nonlinear amplifier.

A typical amplifier response is shown in Figure 10.15. For an ideal linear amplifier a
plot of the output power versus input power would be a straight line with a slope of unity,
and the power gain of the amplifier given by the ratio of the output power to the input power.
The amplifier response of Figure 10.15 tracks the ideal response over a limited range, then
begins to saturate, resulting in reduced gain. To quantify the linear operating range of the
amplifier, we define the 1 dB compression point as the power level for which the output
power has decreased by 1 dB from the ideal linear characteristic. This power level is usually
denoted by P1dB, and can be stated in terms of either input power (IP1dB) or output power
(OP1dB). The 1 dB compression point is typically given as the larger of these two options,
so for amplifiers P1dB is usually specified as an output power, while for mixers P1dB is usu-
ally specified in terms of input power. The relation between a compression point referenced
at the input versus the output is given as, in dB, OP1dB = IP1dB + G − 1 dB [4, 5].

Harmonic and Intermodulation Distortion

Observe from the expansion of (10.40) that a portion of the input signal at frequency ω0 is
converted to other frequency components. For example, the first term of (10.40) represents
a DC voltage, which would be a useful response in a rectifier application. The voltage
components at frequencies 2ω0 or 3ω0 can be useful for frequency multiplier circuits.
In amplifiers, however, the presence of other frequency components will lead to signal
distortion if those components are in the passband of the amplifier.

For a single input frequency, or tone, ω0, the output will in general consist of har-
monics of the input frequency of the form nω0, for n = 0, 1, 2, . . . . Often these harmonics
lie outside the passband of the amplifier and so do not interfere with the desired signal at
frequency ω0. The situation is different, however, when the input signal consists of two
closely spaced frequencies.

Consider a two-tone input voltage, consisting of two closely spaced frequencies ω1
and ω2:

vi = V0(cos ω1t + cos ω2t). (10.42)
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From (10.37) the output is

vo = a0 + a1V0(cos ω1t + cos ω2t) + a2V 2
0 (cos ω1t + cos ω2t)2

+ a3V 3
0 (cos ω1t + cos ω2t)3 + · · ·

= a0 + a1V0 cos ω1t + a1V0 cos ω2t + 1

2
a2V 2

0 (1 + cos 2ω1t) + 1

2
a2V 2

0 (1 + cos 2ω2t)

+ a2V 2
0 cos(ω1 − ω2)t + a2V 2

0 cos(ω1 + ω2)t

+ a3V 3
0

(
3

4
cos ω1t + 1

4
cos 3ω1t

)
+ a3V 3

0

(
3

4
cos ω2t + 1

4
cos 3ω2t

)

+ a3V 3
0

[
3

2
cos ω2t + 3

4
cos(2ω1 − ω2)t + 3

4
cos(2ω1 + ω2)t

]

+ a3V 3
0

[
3

2
cos ω1t + 3

4
cos(2ω2 − ω1)t + 3

4
cos(2ω2 + ω1)t

]
+ · · · . (10.43)

where standard trigonometric identities have been used to expand the initial expression.
We see that the output spectrum consists of harmonics of the form

mω1 + nω2, (10.44)

with m, n = 0,±1,±2,±3, . . . . These combinations of the two input frequencies are
called intermodulation products, and the order of a given product is defined as |m| + |n|.
For example, the squared term of (10.43) gives rise to the following four intermodulation
products of second order:

2ω1 (second harmonic of ω1) m = 2 n = 0 order = 2,

2ω2 (second harmonic of ω2) m = 0 n = 2 order = 2,

ω1 − ω2 (difference frequency) m = 1 n = −1 order = 2,

ω1 + ω2 (sum frequency) m = 1 n = 1 order = 2.

All of these second-order products are undesired in an amplifier, but in a mixer the sum or
difference frequencies form the desired outputs. In either case, if ω1 and ω2 are close, all
of the second-order products will be far from ω1 or ω2 and can easily be filtered (either
passed or rejected) from the output of the component. Note from (10.43) that the ratio of
the amplitude of the second-order intermodulation product ω1 − ω2 (or ω1 + ω2) to the
amplitude of a second harmonic 2ω1 (or 2ω2) is 2.0, so the second-order harmonic power
will be 6 dB less than the power in the second-order sum or difference terms.

The cubed term of (10.43) leads to six third-order intermodulation products: 3ω1, 3ω2,
2ω1 + ω2, 2ω2 + ω1, 2ω1 − ω2, and 2ω2 − ω1. The first four of these will again be located
far from ω1 or ω2, and will typically be outside the passband of the component. However,
the two difference terms produce products located near the original input signals at ω1 and
ω2, and so cannot be easily filtered from the passband of an amplifier. Figure 10.16 shows
a typical spectrum of the second- and third-order two-tone intermodulation products. For
an arbitrary input signal consisting of many frequencies of varying amplitude and phase,
the resulting in-band intermodulation products will cause distortion of the output signal.
This effect is called third-order intermodulation distortion.

It can be seen from (10.43) that the ratio of the amplitude of the third-order intermod-
ulation product 2ω1 − ω2 (or 2ω2 − ω1) to the amplitude of the third harmonic 3ω1 (or
3ω2) is 3.0, so the third-order harmonic power will be 9.54 dB less than the power in the
third-order intermodulation terms.
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FIGURE 10.16 Output spectrum of second- and third-order two-tone intermodulation products,
assuming ω1 < ω2.

Third-Order Intercept Point

Equation (10.43) shows that as the input voltage V0 increases, the voltage associated with
the third-order products increases as V 3

0 . Since power is proportional to the square of volt-
age, we can also say that the output power of third-order products must increase as the cube
of the input power. So for small input powers the third-order intermodulation products will
be very small, but will increase quickly as input power increases. We can view this effect
graphically by plotting the output power for the first- and third-order products versus input
power on log-log scales (or in dB), as shown in Figure 10.17.

The output power of the first-order, or linear, product is proportional to the input
power, and so the line describing this response has a slope of unity (before the onset of
compression). The line describing the response of the third-order products has a slope of 3.
(The second-order products would have a slope of 2, but since these products are generally
not in the passband of the component, we have not plotted their response in Figure 10.17.)
Both the linear and third-order responses will exhibit compression at high input powers, so
we show the extension of their idealized responses with dotted lines. Since these two lines
have different slopes, they will intersect, typically at a point above the onset of compres-
sion, as shown in the figure. This hypothetical intersection point where the first-order and
third-order powers would be equal is called the third-order intercept point, denoted as IP3;
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FIGURE 10.17 Third-order intercept diagram for a nonlinear component.
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it may be specified as either an input power level (IIP3), or an output power level (OIP3).
The relation between an intercept point referenced at the input versus the output is simply
OIP3 = G (IIP3). As with the 1 dB compression point, the reference for IP3 is typically
chosen to result in the largest value, so IP3 is usually referenced at the output for amplifiers
and at the input for mixers. As depicted in Figure 10.17, IP3 generally occurs at a higher
power level than P1dB, the 1 dB compression point. Many practical components follow
the approximate rule that IP3 is 10–15 dB greater than P1dB, assuming these powers are
referenced at the same point.

We can express IP3 in terms of the Taylor coefficients of the expansion of (10.43) as
follows. Define Pω1 as the output power of the desired signal at frequency ω1. Then from
(10.43) we have

Pω1 = 1

2
a2

1 V 2
0 . (10.45)

Similarly, define P2ω1−ω2 as the output power of the intermodulation product of frequency
2ω1 − ω2. Then from (10.43) we have

P2ω1−ω2 = 1

2

(
3

4
a3V 3

0

)2

= 9

32
a2

3 V 6
0 . (10.46)

By definition, these two powers are equal at the third-order intercept point. If we define the
input signal voltage at the intercept point as VIP, then equating (10.45) and (10.46) gives

1

2
a2

1 V 2
IP = 9

32
a2

3 V 6
IP.

Solving for VIP yields

VIP =
√

4a1

3a3
. (10.47)

Since OIP3 is equal to the linear response of Pω1 at the intercept point, we have from
(10.45) and (10.47) that

OIP3 = Pω1

∣∣
V0=VIP

= 1

2
a2

1 V 2
IP = 2a3

1

3a3
, (10.48)

where IP3 in this case is referred to the output port. These expressions will be useful in the
following sections.

Intercept Point of a Cascaded System

As in the case of noise figure, a cascade connection of components usually has the ef-
fect of degrading (lowering) the third-order intercept point. Unlike noise powers, however,
intermodulation products in a cascaded system are deterministic and may be in phase co-
herence, in which case we cannot simply add powers but must deal with voltages [5]. We
will first consider the coherent (in-phase) cascade case, then the noncoherent case.

With reference to Figure 10.18, G1 and OIP′
3 are the power gain and third-order inter-

cept point for the first stage, and G2 and OIP′′
3 are the corresponding values for the second

stage. Let P ′
ω1

be the first-stage output power of the desired signal at frequency ω1, and let
P ′

2ω1−ω2
be the first-stage output power at the third-order intermodulation product. From

(10.46), P ′
2ω1−ω2

can be rewritten in terms of P ′
ω1

and OIP′
3, using (10.45) and (10.48), as
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FIGURE 10.18 Third-order intercept point for a cascaded system. (a) Two cascaded networks.
(b) Equivalent network.

follows:

P ′
2ω1−ω2

= 9a2
3 V 6

0

32
=

1

8
a6

1 V 6
0

4a6
1

9a2
3

= (P ′
ω1

)3

(OIP′
3)

2
. (10.49)

The first-stage output voltage associated with this power is

V ′
2ω1−ω2

=
√

P ′
2ω1−ω2

Z0 =
√(

P ′
ω1

)3
Z0

OIP′
3

, (10.50)

where Z0 is the system impedance.
For coherent intermodulation products, the total third-order distortion voltage at the

output of the second stage is the sum of the above voltage times the voltage gain of the
second stage, and the distortion voltage generated by the second stage. This is because
these voltages are deterministic and phase related, unlike uncorrelated noise powers that
arise in cascaded components. Adding these voltages gives the worst-case result for the
overall distortion level because there may be phase delays within the stages that could
cause partial cancellation. Thus we can write the worst-case total distortion voltage at the
output of the second stage as

V ′′
2ω1−ω2

=
√

G2
(
P ′

ω1

)3
Z0

OIP′
3

+
√(

P ′′
ω1

)3
Z0

OIP′′
3

.

Since P ′′
ω1

= G2 P ′
ω1

, we have

V ′′
2ω1−ω2

=
(

1

G2
(
OIP′

3

) + 1

OIP′′
3

)√(
P ′′

ω1

)3
Z0. (10.51)

The total output distortion power is

P ′′
2ω1−ω2

=
(

V ′′
2ω1−ω2

)2

Z0
=

(
1

G2
(
OIP′

3

) + 1

OIP′′
3

)2(
P ′′

ω1

)3 =
(
P ′′

ω1

)3

(OIP3)
2
. (10.52)

Thus the third-order intercept point of the cascaded system with coherent products is

OIP3 =
(

1

G2
(
OIP′

3

) + 1

OIP′′
3

)−1

. (10.53)

Note that OIP3 = G2
(
OIP′

3

)
for OIP′′

3 → ∞, which is the limiting case when the second
stage has no third-order distortion.
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FIGURE 10.19 System for Example 10.4.

If the intermodulation products from each stage have relatively random phases, which
may occur when the intermodulation products are not very close to the fundamental signals,
it may be proper to treat the individual contributions as incoherent, allowing us to add
powers. It is straightforward to show that the overall intercept point in this case is given by

OIP3 =
(

1

G2
2

(
OIP′

3

)2
+ 1(

OIP′′
3

)2

)−1/2

. (10.54)

EXAMPLE 10.4 CALCULATION OF CASCADE INTERCEPT POINT

A low-noise amplifier and mixer are shown in Figure 10.19. The amplifier has a
gain of 20 dB and a third-order intercept point of 22 dBm (referenced at output),
and the mixer has a conversion loss of 6 dB and a third-order intercept point of
13 dBm (referenced at input). Find the intercept points of the cascade network for
both a phase coherence assumption and a random-phase (noncoherence) assump-
tion.

Solution
First we transfer the reference of IP3 for the mixer from its input to its output:

OIP′′
3 = (

IIP′′
3

)
G2 = 13 dBm − 6 dB = 7 dBm.

Converting the necessary dB values to numerical values yields:

OIP′
3 = 22 dBm = 158 mW (for amplifier),

OIP′′
3 = 7 dBm = 5 mW (for mixer),

G2 = −6 dB = 0.25 (for mixer).

Assuming coherence, equation (10.53) gives the intercept point of the cascade as

OIP3 =
(

1

G2
(
OIP′

3

) + 1

OIP′′
3

)−1

=
(

1

(0.25)(158)
+ 1

5

)−1

= 4.4 mW = 6.4 dBm,

which is seen to be lower than the minimum IP3 of the individual components.
Equation (10.54) gives the results for the noncoherent case as

OIP3 =
(

1

G2
2

(
OIP′

3

)2
+ 1(

OIP′′
3

)2

)−1/2

=
(

1

(0.25)2 (158)2
+ 1

(5)2

)−1/2

= 4.96 mW = 6.9 dBm.

As expected, the noncoherent case results in a slightly higher intercept point. ■
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Passive Intermodulation

The above discussion of intermodulation distortion was in the context of active circuits
involving diodes and transistors, but it is also possible for intermodulation products to
be generated by passive nonlinear effects in connectors, cables, antennas, or almost any
component where there is a metal-to-metal contact. This effect is called passive intermod-
ulation (PIM) and, as in the case of intermodulation in amplifiers and mixers, it occurs
when signals at two or more closely spaced frequencies mix to produce spurious products.

Passive intermodulation can be caused by a number of factors, such as poor mechan-
ical contact, oxidation of junctions between ferrous-based metals, contamination of con-
ducting surfaces at RF junctions, or the use of nonlinear materials such as carbon fiber
composites or ferromagnetic materials. In addition, when high powers are involved, ther-
mal effects may contribute to the overall nonlinearity of a junction. It is very difficult
to predict PIM levels from first principles, so measurement techniques must usually be
used.

Because of the third-power dependence of the third-order intermodulation products
with input power, passive intermodulation is usually only significant when input signal
powers are relatively large. This is frequently the case in cellular telephone base station
transmitters, which may operate with powers of 30–40 dBm, with many closely spaced
RF channels. It is often desired to maintain the PIM level below −125 dBm, with two
40 dBm transmit signals. This is a very wide dynamic range, and requires careful selec-
tion of components used in the high-power portions of the transmitter, including cables,
connectors, and antenna components. Because these components are often exposed to the
weather, deterioration due to oxidation, vibration, and sunlight must be offset by a careful
maintenance program. Communications satellites often face similar problems with passive
intermodulation. Passive intermodulation is generally not a problem in receiver systems
due to the much lower power levels.

10.4 DYNAMIC RANGE

Linear and Spurious Free Dynamic Range

We can define dynamic range in a general sense as the operating range for which a compo-
nent or system has desirable characteristics. For a power amplifier this may be the power
range that is limited at the low end by noise and at the high end by the compression point.
This is essentially the linear operating range for the amplifier, and is called the linear dy-
namic range (LDR). For low-noise amplifiers or mixers, operation may be limited by noise
at the low end and the maximum power level for which intermodulation distortion be-
comes unacceptable. This is effectively the operating range for which spurious responses
are minimal, and it is called the spurious-free dynamic range (SFDR).

We can find the linear dynamic range LDR as the ratio of P1dB, the 1 dB compression
point, to the noise level of the component, as shown in Figure 10.20. In dB, this can be
written in terms of output powers as

LDR (dB) = OP1dB − No, (10.55)

for OP1dB and No expressed in dBm. Note that some authors prefer to define the linear
dynamic range in terms of a minimum detectable power level. This definition is more ap-
propriate for a receiver system rather than an individual component, as it depends on factors
external to the component itself, such as the type of modulation used, the recommended
system SNR, effects of error-correcting coding, and related factors.
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FIGURE 10.20 Illustrating linear dynamic range (LDR) and spurious free dynamic range
(SFDR).

The spurious free dynamic range is defined as the maximum output signal power for
which the power of the third-order intermodulation product is equal to the noise level of
the component, divided by the output noise level. This situation is shown in Figure 10.20.
If Pω1 is the output power of the desired signal at frequency ω1, and P2ω1−ω2 is the output
power of the third-order intermodulation product, then the spurious free dynamic range can
be expressed as

SFDR = Pω1

P2ω1−ω2

, (10.56)

with P2ω1−ω2 taken equal to the noise level of the component. As in (10.49), P2ω1−ω2 can
be written in terms of OIP3 and Pω1 as

P2ω1−ω2 = (Pω1)
3

(OIP3)2
. (10.57)

Observe that this result clearly shows that the third-order intermodulation power increases
as the cube of the input signal power. Solving (10.57) for Pω1 and applying the result to
(10.56) gives the spurious free dynamic range in terms of OIP3 and No, the output noise
power of the component:

SFDR = Pω1

P2ω1−ω2

∣∣∣∣
P2ω1−ω2=No

=
(

OIP3

No

)2/3

. (10.58)

This result can be written in terms of dB as

SFDR (dB) = 2

3
(OIP3 − No), (10.59)

for OIP3 and No expressed in dBm. Although this result was derived for the 2ω1 − ω2
product, the same result applies for the 2ω2 − ω1 product.

In a receiver it may be required to have a minimum detectable signal level, or min-
imum SNR, in order to achieve a specified performance level. This requires an increase
in the input signal level, resulting in a corresponding decrease in dynamic range, since the
spurious power level is still equal to the noise power. In this case, the spurious free dynamic
range of (10.59) would be modified as [5, 6]:

SFDR (dB) = 2

3
(OIP3 − No) − SNR. (10.60)
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EXAMPLE 10.5 DYNAMIC RANGES

A receiver has a noise figure of 7 dB, a 1 dB compression point of 25 dBm (ref-
erenced to output), a gain of 40 dB, and a third-order intercept point of 35 dBm
(referenced to output). If the receiver is fed with an antenna having a noise tem-
perature of TA = 150 K, and the desired output SNR is 10 dB, find the linear and
spurious free dynamic ranges. Assume a receiver bandwidth of 100 MHz.

Solution
The noise power at the receiver output can be calculated using noise temperatures
as

No = Gk B[TA + (F − 1)T0] = 104(1.38 × 10−23)(108)[150 + (4.01)(290)]
= 1.8 × 10−8 W = −47.4 dBm.

The linear dynamic range is, from (10.55), in dB,

LDR = OP1dB − No = 25 dBm + 47.4 dBm = 72.4 dB.

Equation (10.60) gives the spurious free dynamic range as

SFDR = 2

3
(OIP3 − No) − SNR = 2

3
(35 + 47.4) − 10 = 44.9 dB.

Observe that SFDR � LDR. ■

REFERENCES

[1] F. T. Ulaby, R. K. Moore, and A. K. Fung, Microwave Remote Sensing: Active and Passive, Volume I,
Microwave Remote Sensing, Fundamentals and Radiometry. Addison-Wesley, Reading, Mass., 1981.

[2] M. E. Hines, “The Virtues of Nonlinearity—Detection, Frequency Conversion, Parametric Ampli-
fication and Harmonic Generation,” IEEE Transactions on Microwave Theory and Techniques, vol.
MTT-32, pp. 1097–1104, September 1984.

[3] S. A. Maas, Nonlinear Microwave and RF Circuits, 2nd ed., Artech House, Norwood, Mass., 2003.
[4] K. Chang, RF and Microwave Wireless Systems, John Wiley & Sons, New York, 2000.
[5] W. Egan, Practical RF System Design, John Wiley & Sons, Hoboken, N.J., 2003.
[6] M. Steer, Microwave and RF Design: A Systems Approach, SciTech, Raleigh, N.C., 2010.

PROBLEMS

10.1 The noise figure of a microwave receiver front-end is measured using the Y -factor method. A noise
source having an ENR of 22 dB, and a liquid nitrogen cold load (77 K) are used, resulting in a
measured Y -factor ratio of 15.83 dB. What is the noise figure of the receiver?

10.2 Assume that measurement error introduces an uncertainty of �Y into the measurement of Y in a Y -
factor measurement. Derive an expression for the normalized error, �Te/Te, of the equivalent noise
temperature in terms of �Y/Y and the temperatures T1, T2, and Te. Minimize this result with respect
to Te to obtain an expression for Te in terms of T1 and T2 that will result in minimum error.

10.3 A lossy transmission line has a noise figure of F0 at temperature T0 = 290 K. Calculate and plot the
noise figure of this line as its physical temperature ranges from T = 0 K to 1000 K, for F0 = 1 dB
and for F0 = 3 dB.

10.4 An amplifier with a gain of 12 dB, a bandwidth of 150 MHz, and a noise figure of 4 dB feeds a
receiver with a noise temperature of 900 K. Find the noise figure of the overall system.
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10.5 A cellular telephone receiver front-end circuit is shown below. The operating frequency is 1805–
1880 MHz, and the physical temperature of the system is 300 K. A noise source with Ni = −95
dBm is applied to the receiver input. (a) What is the equivalent noise temperature of the source over
the operating bandwidth? (b) What is the noise figure (in dB) of the amplifier? (c) What is the noise
figure (in dB) of the cascaded transmission line and amplifier? (d) What is the total noise power
output (in dBm) of the receiver over the operating bandwidth?

Noise
source

Transmission
line Amplifier

Ni = �95 dBm G = 12 dB
Te = 180 K

No

L  = 1.5 dB

10.6 Consider the wireless local area network (WLAN) receiver front-end shown below, where the band-
width of the bandpass filter is 100 MHz centered at 2.4 GHz. If the system is at room temperature,
find the noise figure of the overall system. What is the resulting signal-to-noise ratio at the output if
the input signal power level is −90 dBm? Can the components be rearranged to give a better noise
figure?

IL = 1.5 dB G = 10 dB
F = 2 dB

G = 20 dB
F = 2 dB

10.7 A two-way power divider has one output port terminated in a matched load, as shown below. Find
the noise figure of the resulting two-port network if the divider is (a) an equal-split two-way resistive
divider, (b) a two-way Wilkinson divider, and (c) a 3 dB quadrature hybrid. Assume the divider in
each case is matched, and at room temperature.

Power
divider

Z0

10.8 Show that, for fixed loss L > 1, the equivalent noise temperature of a mismatched lossy line given in
(10.33) is minimized when |�s | = 0.

10.9 Consider the mismatched amplifier of Figure 10.13, having a noise figure F when matched at its
input. Calculate and plot the resulting noise figure as the input reflection coefficient magnitude, |�|,
varies from 0 to 0.9 for F = 1, 3, and 10 dB.

10.10 A lossy line at temperature T feeds an amplifier with noise figure F , as shown below. If an impedance
mismatch � is present at the input of the amplifier, find the overall noise figure of the system.

Z0, L, T � G, F

10.11 A balanced amplifier circuit is shown below. The two amplifiers are identical, each with power gain
G and noise figure F . The two quadrature hybrids are also identical, with an insertion loss from the
input to either output of L > 1 (not including the 3 dB power division factor). Derive an expression
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for the overall noise figure of the balanced amplifier. What does this result reduce to when the hybrids
are lossless?

Z0

So, No

Z0

Ni, Si

L LG, F

G, F

10.12 Show that the following relations involving the third-order intercept point of a two-port nonlinear
network are valid. Pi

ω1
and Po

ω1
are the input and output power levels of an applied two-tone signal,

and Pi
2ω1−ω2

and Po
2ω1−ω2

are the power levels of the third-order products referenced to the input
and output.

OIP3 − Po
ω1

IIP3 − Pi
ω1

= 1,
OIP3 − Po

2ω1−ω2

IIP3 − Pi
2ω1−ω2

= 3.

10.13 In practice, the third-order intercept point is extrapolated from measured data taken at input power
levels well below IP3. For the spectrum analyzer display shown below, where �P is the difference
in power between Pω1 and P2ω1−ω2 , show that the third-order intercept point is given by OIP3 =
Pω1 + (1/2)�P . Calculate the input and output third-order intercept points for the following data:
Pω1 = 5 dBm, P2ω1−ω2 = −27 dBm, Pin = −4 dBm.

10.14 A two-tone input with a 6 dB difference in the two signal levels is applied to a nonlinear component.
What is the relative power ratio of the resulting two third-order intermodulation products 2ω1 − ω2
and 2ω2 − ω1, if ω1 and ω2 are close together?

10.15 Find the third-order intercept points for the problem of Example 10.4 when the positions of the
amplifier and mixer are reversed.

10.16 It is possible to approximately relate the 1 dB compression point to the third-order intercept point.
For a single-tone input, use (10.40) to find the amplitudes of the fundamental and third harmonic
terms, and assume that a3 is of opposite sign to a1. Let V0 be the voltage where the third-order term
reduces the first-order power by 1 dB, and solve for |a3/a1|. For a two-tone input, use (10.43) to find
the amplitude of the third-order intermodulation product, then use (10.44) to relate OP1dB to OIP3.

10.17 An amplifier with a bandwidth of 1 GHz has a gain of 15 dB and a noise temperature of 250 K. If
the 1 dB compression point occurs for an output power level of 5 dBm, what is the linear dynamic
range of the amplifier?

10.18 A receiver subsystem has a noise figure of 6 dB, a 1 dB compression point of 21 dBm (referenced
to output), a gain of 30 dB, and a third-order intercept point of 33 dBm (referenced to output). If
the subsystem is fed with a noise source with Ni = −105 dBm and the desired output SNR is 8 dB,
find the linear and spurious free dynamic ranges of the subsystem. Assume a system bandwidth of
20 MHz.
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