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Microwave Resonators Applications

Microwave resonators are used in a variety of applications 
such as:
• Filters
• Oscillators
• Frequency meters
• Tuned Amplifier

The operation of microwave resonators are very similar to 
that of the lumped-element resonators of circuit theory, thus 
we will review the basic of series and parallel RLC resonant 
circuits first.
We will derive some of the basic properties of such circuits.



Series Resonant Circuit

Near the resonance frequency, a microwave resonator can be modeled 
as a series or parallel RLC lumped-element equivalent circuit.
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Resonance occurs when the average 
stored magnetic (Wm) and electric 
energies (We) are equal and Zin is purely 
real.

A series RLC resonator and its 
response. (a) The series RLC circuit. 
(b) The input impedance magnitude 
versus frequency.
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A series RLC resonator and its 
response. (a) The series RLC circuit. 
(b) The input impedance magnitude 
versus frequency.
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Series Resonators

• The frequency in which 

is called the resonant frequency. 
• Another important factor is the Quality 
Factor Q.
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The input impedance magnitude versus frequency.
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Series Resonators

Fractional Bandwidth is defined as:

and happens when the average (real) power delivered to the 
circuit is one-half that delivered at the resonance.
• Bandwidth increases as R increases.
• Narrower bandwidth can be achieved at higher quality factor 
(Smaller R).
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A parallel RLC resonator and its 
response. (a) The parallel RLC circuit. 
(b) The input impedance magnitude 
versus frequency.
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Resonance occurs when the average 
stored magnetic and electric energies 
are equal and Zin is purely real. The input 
impedance at resonance is equal to R.
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Note: Resonance frequency is equal to the 
series resonator case. Q is inversed.



The input impedance magnitude versus frequency.
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Parallel Resonators

• Bandwidth reduces as R increases.
• Narrower bandwidth can be achieved at higher quality factor (Larger R).
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A resonant circuit connected to an external load, RL.

for series connection

 for parallel connection
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Loaded and Unloaded Q Factor

The Q factors that we have calculated were based on the characteristic of the 
resonant circuit itself, in the absence of any loading effect (Unloaded Q).

In practice a resonance circuit is always connected to another circuitry, which 
will always have the effect of lowering the overall Q (Loaded Q).



Loaded Q Factor

If the resonator is a series RLC and coupled to an external load resistor 
RL, the effective resistance is:  

Le RRR 

If the resonator is a parallel RLC and coupled to an external load 
resistor RL, the effective resistance is:  
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Then the loaded Q can be written as: 

1 1 1

L eQ Q Q
 

Note: Loaded Q factor is always smaller than Unloaded Q.





A short-circuited length of lossy 
transmission line.

Transmission Line Resonators (Short Circuited)
• Ideal lumped element (R, L and C) are usually impossible to 
find at microwave frequencies.
• We can design resonators with transmission line sections with 
different lengths and terminations (Open or Short).
• Since we are interested in the Q of these resonators we will 
consider the Lossy Transmission Line.
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A short-circuited length of lossy
transmission line and the voltage 

distributions for n=1, 

Transmission Line Resonators (Short Circuited)

• The resonance occurs for 
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An open-circuited length of lossy 
transmission line, and the voltage 
distributions for n = 1                              
resonators.
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A rectangular resonant cavity, and the electric field 
distributions for the TE101 and TE102 resonant 
modes.

Rectangular waveguide cavity resonator 

We can look at them as short circuit section of transmission line
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the lowest and dominant resonant TE (resp TM) mode
will be TE101 (resp. TM110)
if b a d 



Rectangular waveguide cavity resonator
Q factor for TE10l
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Resonators - coupling

Critical coupling occurs when ueL QQQ 2

If we define coupling coefficient
e

u

Q
Qg  then we have 

• undercoupled resonator if g<1
• critically coupled resonator if g=1 (resonator matched to the feed line)
• overcoupled resonator if g>1 

Series RLC circuit

series RLC        parallel RLC
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Gap coupled microstrip resonator resonators 

The coupling of the feed line to the 
resonator lowers its resonant frequency 



Gap coupled microstrip resonator resonators 
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