Microwave CAD and Measurements, Mid-Term. Exam.

학번 () 성명 () 이동전화번호() PIN = *abcd*: 휴대전화 끝 4 자리 (예: 010-8028-3194, *a* = 3, *b* = 1, *c* = 9, *d* = 4), 단 각 숫자가 0인 경우 순차적으로 1,2,3,4로 대체 (예: 010-1234-0097인 경우 *a* = 1, *b* = 2, *c* = 9, *d* = 7) 배점: 소문제당 10점

1. Given a transmission line with L = (100a + 10b + c) nH/m, C = (10d + a) pF/m, R = 0, G = 0, f = (1000b + 200c+30d) MHz, calculate 1) the characteristica impedance Z_0 (Ω),

- 2) the attenuation constant \Box (Np/m), and
- 3) the phase constant \Box (rad/m).

2. Write a Python code to find

- 1) the characteristica impedance $Z_0(\Omega)$ and
- 2) the complex propagation constant \Box (/m)

for a transmission line with L = (100a + 10b + c) nH/m, C = (10d + a) pF/m, R = (100c + 10b + a) mΩ/m, $G = 10d \mu\Omega/m$, f = (1000b + 200c+30d) MHz. Submit the source code and a sample of a code execution.

3. Design an air-filled parallel-plate transmission line with a characteristic impedance of $20a \Omega$. Use a perfect electric conductor (PEC) material. Use $\Box = \infty$ for PEC and $\Box = 1$ for air.

4. A load Z_L at z = 0 is connected with a transition line of length l with Z_0 and \Box with $Z_L = 10(a + jc) \Omega$, $Z_0 = 20d \Omega$, l = 0.1b wavelength (transition line length).

Find

1) the load reflection coefficient $\Gamma_L = \Gamma(0)$,

- 2) the input reflection coefficient $\Gamma(-l)$,
- 3) the input impedance $Z(-l)(\Omega)$, and

4) the power delivered to the load when a power of 1 watt is incident on the transmissio line at z = -l.

5. Draw on a Smith chart

1) an
$$r = d/10$$
 circle, and.

2) an x = b/5 circle.

6. Write a Python code for calculating Γ_{in} and Γ_{out} of a two-port network shown below. Submit the source code and a sample of a code execution.

7. Write a Python code for calculating input impedance $Z_{in}(\Omega)$ and the input reflection coeffcient $\Gamma_{in}(dB)$ of the circuit shown below with a reference impedance Z_0 of $20c \Omega$ at 10*b* MHz frequency interval between 200 MHz and 800 MHz.

- 8. A load impedance $Z_L = 30a j30b \Omega$ is to be transformed to $Z_{in} = Z_0 = 20d \Omega$ at 100b MHz.
- 1) Use a Python code given in the lecture webpage to find all possible *LC* matching networks. Submit the source code and the result of your program execution by capturing the PC screen.
- 2) Draw all of your matching networks.