Antenna Design, Parabolic Reflector

 

I. Theory

1. Optics-based Antennas

- Reflector antennas

- Lens antennas

 

lens antenna ray tracing 이미지 검색결과"

Figure: Optical antennas. Left = lens antenna, right = parabolic reflector antenna. From C. A. Fernandes et al. in Handbook of Antenna Technologies, Z. N. Chen et al. Ed. Springer, 2016

 

- Various types of reflector antennas

Figure: Reflector antennas in various forms. After P. Hazdra.

 

2. Parabolic Reflector Antenna

- Theory of operation: conversion of a spherical wave into a planewave

- Ray path length independent of the ray angle

 

Figure: Geometry of a parabolic reflector. After P. Hazdra

 

- Various types of the reflector antenna

 

- Origin at the reflector apex

- F-A-A' path length = F-B-B'  path length

 

 

- Origin at the focal point

 

- Space taper

 

- Feed-oriented geometrical equations

 

3. Parabolic Reflector Antenna Design Procedures

- Maximum efficiecny condition

Figure: Feed illumination loss and spillover loss. After P. Wade

 

Figure: Optimum edge taper in the reflector illumination. From P. Hazdra

 

- Feed taper due to spherical wave spreading

    

     

 

Figure: Spherical wave spreading loss

 

 

- Gain speficied   

    

- Calculate the reflector diameter assuming 50% efficiency (when realized).

- Design a feed and find its 10-dB half-beamwidth .

    

- Design a parabolic reflector.

    

     z: axial distance from the apex

     x: radial distance from the apex

- Simulate the reflector illuminated by the feed.

     Full-wave simulation

     Full-wave symmetrical simmulation: 1/2, 1/4 of the structure applying the field symmetry

     Simulation using the far field of the feed

- Analyze the reflector performance.

 

     

Figure: 3D gain patterns of a 15-wavelength parabolic reflector. After P. Hazdra

 

Figure: Cartesian gain patterns of a 15-wavelength refelctor antenna. After P. Hazdra

 

 

 

4. Feed Design

- Sidelobe level of a circular aperture

Uniform circular aperture:

     : direcitivity

     a : aperture radius

    

     SLL = -17.6 dB : sidelobe level

 

Uniform rectangular apertuer:

    

    

     SLL = -13.3 dB

 

- Tapered aperture

Figure: Performance of tapered circular apertuers. After W. L. Stutzman.

 

- Feed types

     Horns for the Cassegrain reflector

     Circular waveguides for the prime-focus parabolic reflector

- Feed performance

     10-dB beamwidth

     E- and H-plane pattern symmetry

     Cross polarization level

     Phase center

- Feed gain pattern in 3D

Figure: 3D gain pattern of a circular waveguide feed. From P. Hazdra

 

- Feed gain pattern in Cartesian

 

Figure: Cartesian gain pattern of a circular waveguide feed. From P. Hazdra

 

- Feed phase pattern

 

   

Figure: Phase pattern of a circular waveguide feed. From O. Garcia-Perez.

 

- Cicular waveguide feed

     Good E- and H-plane pattern symmetry when the waveguide diameter is 0.65 wavelength.

     Backlobe supperssion: Use a quarter-wave choke around the aperture

     E-plane slits (two of them): To improve the pattern symmetry

 

5. Reflector Antenna Analysis

5.1 Radiation pattern calculation

1) 1D aperture integration

- Axi-symmetric case:

    

     : reflector's pattern angle

     : feed's pattern angle

    

    

    

    

 

- Calculation of Bessel function J0(x):

     Single-precision Fortran

     Modification of Abramowitz & Stegun for 0.001 accuracy

 

 

 

2) 2D aperture integration

3) Feed blockage modeling

4) High-frequency methods

- PO

- Ray methods: GTD, PTD, UTD

- Effects of the aperture blockage

     Efficiency decrease due physical blockage: simple formula available

     Sidelobe increase: simple formula available

     Feed diffraction/scattering efficiency loss: graph available

- Main reflector rim diffraction

     Backlobe increase at 180°: main reflector rim diffractions add in phase.

     Reduction of rim diffraction:

     Rim edge: rolled, castellated, serrated

 

5.2 Efficiency calculation

- Maximum directivity

     : maximum possible directivity

     Ap : antenna aperture's physical area

    

- Realized directivity

    

    

      : antenna aperture efficiency

      : feed blockage efficiency

      : feed diffraction efficiency

      : feed amplitude taper efficiency

      : feed phase efficiency

      : feed spill-over efficiency

     : feed cross-polarization efficiency

      : implementation efficiecy. Main reflector surface error, feed dielectric loss, feede reflection loss

- Feed mismatch or reflection efficiency   

    

- Feed lockage efficiency:

    

- Amplitude taper efficiency:

    

 

- Phase error efficiency:

    

 

-  Spill-over efficiency:

         

 

- Cross-polarization efficiency:

    

 

-  Efficiency in dB

Efficiency

Decibel (dB)

1.0

0

0.9

– 0.46

0.8

– 0.97

0.7

– 1.55

0.6

– 2.22

0.5

– 3.01

0.4

– 3.98

0.3

– 5.23

 

5.3 Accurate analysis of reflector antennas

- High-frequency methods-based commercial software package

     Grasp

     ICARA

- Full-wave analysis package

     CST Studio

     HFSS

     FEKO

 

- Literature 

1) Milligan: p. 65

20-lambda parabolic reflector with -12dB taper illumination

Sidelobe around 100°: due to feed spillover

PO: accurate up to 120 degrees off axis

PTD: accurate up to 180 degrees off axis

 

2) Yurduseven(11-ieee):

ARM (analytical regularization method): 2-D problem, E-polarized wave diffraction by arbitrary shaped, smooth and PEC cylindrical obstacles

3) Oguzer(95-ieee)

 

a: main reflector radius

 

b: feed radius

 

5.4 Front-to-back ratio estimation

Milligan, p. 399

G : antenna gain

T : feed taper ( > 0)

Gf : feed gain

 

6. Reflector Antenna Product Specs.

ETSI Class 2/3

Dia 0.6m

Pol single

Freq: 7.75-8.5GHz

Gain: 30.4-31.6dB

Beamwidth: 4.5°/4.5°

X-pol: 30dB

F/B: 54dB

VSWR: -16dB (1.37:1)

 

 

7. Reflector Antenna Examples

Mount Pleasant Radio Telescope.jpg

Figure: A 26-m prime-focus parabolic reflector antnena and a 12-m AuScope VLBI antenna at the Mount Pleasant Radio Observatory (Australia). From Wikipedia

 

Figure: High-performance backfire feed. From Garcia-Perez.

Small Deployable Antennas        Zoom

Figure: Left = General Dynamics uPak C060QDA 60-cm reflector antenna for SATCOM on the move (SOTM) operating at Ka, Ku, and X bands. Right = Skytech 30-cm ADE reflector for SOTM (Rx 10.7-12.75 GHz, Tx 13.75-14.5 GHz)

 

    

Figure: Gain patterns of a 10.3-λ backfire fed parabolic reflector antenna. From Kildal, IEEE T-AP, 45(7), 1997

 

References

[1] T. A. Milligan, Modern Antenna Design, 2nd Edition, IEEE-Wiley, 2005.

[2] W. L. Stutzman and G. A. Theiele, Antenna Theory and Design, 3rd Edition, Wiley, 2013