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The polarization is the locus traced by the extremity of the time-varying field 
vector at a fixed observation point. 

Lecture 5: Polarization and Related Antenna Parameters 
(Polarization of EM fields – revision. Polarization vector. Antenna 
polarization. Polarization loss factor and polarization efficiency.) 
 
1. Introduction and Definition 

The polarization of the EM field describes the orientation of its vectors at a 
given point and how it varies with time. In other words, it describes the way the 
direction and magnitude of the field vectors (usually E) change in time. 
Polarization is associated with TEM time-harmonic waves where the H vector 
relates to the E vector simply by ˆ /η= ×H r E . 

In antenna theory, we are concerned with the polarization of the field in the 
plane orthogonal to the direction of propagation—this is the plane defined by 
the far-zone vectors E and H. Remember that the far field is a quasi-TEM field. 

 

 
According to the shape of the trace, three types of polarization exist for 

harmonic fields: linear, circular and elliptical. Any polarization can be 
represented by two orthogonal linear polarizations, ( ,x yE E ) or ( ,H VE E ), the 
fields of which may, in general, have different magnitudes and may be out of 
phase by an angle Lδ . 
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• If 0Lδ =  or nπ , then the field is linearly polarized. 
 
 

   

   
Animation: Linear Polarization, 0Lδ = , x yE E=  
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• If / 2 (90 )Lδ π=   and | | | |x yE E= , then the field is circularly polarized. 
 

    
Animation: Clockwise Circular Rotation 

 
 

• In the most general case, the polarization is elliptical. 
 

   
Animation: Counter-clockwise Elliptical Rotation 

 
 
 

It is also true that any type of polarization can be represented by a right-
hand circular and a left-hand circular polarizations ( LE , RE ). [Animation] 

Next, we review the above statements and definitions, and introduce the 
new concept of polarization vector. 

2 1 / 2t tω ω π= +1tω

/ 2tω π=0tω =
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2. Field Polarization in Terms of Two Orthogonal Linearly Polarized 
Components 
The polarization of any field can be represented by a set of two orthogonal 

linearly polarized fields. Assume that locally a far-field wave propagates along 
the z-axis. The far-zone field vectors have only transverse components. Then, 
the set of two orthogonal linearly polarized fields along the x-axis and along 
the y-axis, is sufficient to represent any TEMz field. We use this arrangement to 
introduce the concept of polarization vector. 

The field (time-dependent or phasor vector) is decomposed into two 
orthogonal components: 
 x y x y= + ⇒ = +e e e E E E , (5.1) 

 
( )
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ˆ ˆcos  
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−
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 (5.2) 

At a fixed position (assume 0z = ), equation (5.1) can be written as 

 
ˆ ˆ( ) cos cos( )

ˆ ˆ L

x y L

j
x y

t E t E t
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Case 1:  Linear polarization: , 0,1,2,L n nδ π= =   
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 (5.4) 
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Case 2: Circular polarization: 

and , 0,1,2,
2x y m LE E E n nπδ π = = = ± + = 

 
 

 
ˆ ˆ( ) cos( ) cos[ ( / 2 )]

ˆ ˆ( )
x y

m

t E t E t n

E j

ω ω π π= + ± +

⇒ = ±

e x y

E x y
 (5.5) 
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Note that the sense of rotation changes if the direction of propagation 

changes. In the example above, if the wave propagates along ˆ−z , the plot to the 
left, where ˆ ˆ( )mE j= +E x y , corresponds to a right-hand (RH) wave, while the 
plot to the right, where ˆ ˆ( )mE j= −E x y , corresponds to a left-hand (LH) wave. 
Vice versa, if the wave propagates along ˆ+z , then the left plot shows a LH 
wave, whereas the right plot shows a RH wave. 

If ˆ+z  is the direction of propagation: 
counterclockwise (CCW) or left-
hand (LH) polarization 

If ˆ+z  is the direction of 
propagation: clockwise (CW) or 
right-hand (RH) polarization 
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A snapshot of the field vector along the axis of propagation is given below 
for a right-hand circularly polarized (RHCP) wave. Pick an observing position 
along the axis of propagation (see the plane defined by the x and y axes in the 
plot below) and imagine that the whole helical trajectory of the tip of the field 
vector moves along the wave vector k . Are you going to see the vector rotating 
clockwise or counter-clockwise as you look along k ? (Ans.: Clockwise, which 
is equivalent to RH sense of rotation.) 

 

 
[Hayt, Buck, Engineering Electromagnetics, 8th ed., p. 399] 

 
Case 3:  Elliptic polarization 
The field vector at a given point traces an ellipse as a function of time. This 

is the most general type of polarization, obtained for any phase difference δ  
and any ratio ( / )x yE E . Mathematically, the linear and the circular 
polarizations are special cases of the elliptical polarization. In practice, 
however, the term elliptical polarization is used to indicate polarizations other 
than linear or circular. 

 
ˆ ˆ( ) cos cos( )
ˆ ˆ L

x y L

j
x y

t E t E t
E E e δ

ω ω δ= + +

⇒ = +

e x y
E x y

 (5.6) 
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Show that the trace of the time-dependent vector is an ellipse: 
 ( ) (cos cos sin sin )y y L Le t E t tω δ ω δ= ⋅ − ⋅  

( )cos x

x

e tt
E

ω =  and 
2( )sin 1 x

x

e tt
E

ω  = −  
 

 

22
2 ( ) ( )( ) ( )sin 2 cosy yx x

L L
x x y y

e t e te t e t
E E E E

δ δ
      = − +             

 

or (dividing both sides by 2sin Lδ ), 
 2 21 ( ) 2 ( ) ( )cos ( )Lx t x t y t y tδ= − + , (5.7) 

where 
( ) cos( )

sin sin
x

x L L

e t tx t
E

ω
δ δ

= = , 

( ) cos( )( )
sin sin
y L

y L L

e t ty t
E

ω δ
δ δ

+
= = . 

Equation (5.7) is the equation of an ellipse centered in the xy  plane. It 
describes the trajectory of a point of coordinates x(t) and y(t), i.e., normalized 

( )xe t  and ( )ye t  values, along an ellipse where the point moves with an angular 
frequency ω . 

As the circular polarization, the elliptical polarization can be right-handed 
or left-handed, depending on the relation between the direction of propagation 
and the sense of rotation. 

( )xe t

( )ye t
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m
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τ

xE

yE

E

ω
 

The parameters of the polarization ellipse are given below. Their derivation 
is given in Appendix I. 



 

Nikolova 2018 8 

a) major axis (2 OA× ) 

 2 2 4 4 2 21OA = 2 cos(2 )
2 x y x y x y LE E E E E E δ + + + +   (5.8) 

b) minor axis (2 OB× ) 

 2 2 4 4 2 21OB = 2 cos(2 )
2 x y x y x y LE E E E E E δ + − + +   (5.9) 

c) tilt angle τ  

 
2 2

21 arctan cos
2 2

x y
L

x y

A

E E
E E

πτ δ


= ± − 


 (5.10) 

Note: Eq. (5.10) produces an infinite number of angles, τ = (arctanA)/2 
/ 2nπ± , n = 1,2,….Thus, it gives not only the angle which the major 

axis of the ellipse forms with the x axis but also the angle of the minor 
axis with the x axis. In spherical coordinates, τ is usually specified 
with respect to the θ̂  direction 

d) axial ratio 

 
major axis OA
minor axis OB

AR = =  (5.11) 

Note: The linear and circular polarizations as special cases of the elliptical 
polarization: 

• If 2
2L nπδ π = ± + 

 
 and x yE E= , then OA OB x yE E= = = ; the ellipse 

becomes a circle. 
• If L nδ π= , then OB 0=  and arctan( / )y xE Eτ = ± ; the ellipse collapses 

into a line. 
 
3. Field Polarization in Terms of Two Circularly Polarized Components 

The representation of a complex vector field in terms of circularly polarized 
components is somewhat less intuitive but it is actually more useful in the 
calculation of the polarization ellipse parameters. This time, the total field 
phasor is represented as the superposition of two circularly polarized waves, 
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The polarization vector is the normalized phasor of the electric field vector. 
It is a complex-valued vector of unit magnitude, i.e., ˆ ˆ 1L L

∗⋅ =ρ ρ . 

one right-handed and the other left-handed. For the case of a wave propagating 
along z−  [see Case 2 and Eq. (5.5)], 
 ˆ ˆ ˆ ˆ( ) ( )R LE j E j= + + −E x y x y . (5.12) 
Here, ER and EL are, in general, complex phasors. Assuming a relative phase 
difference of C R Lδ ϕ ϕ= − , one can write (5.12) as 
 ˆ ˆ ˆ ˆ( ) ( )Cj

R Le e j e jδ= + + −E x y x y , (5.13) 
where Re  and Le  are real numbers. 

The relations between the linear-component and the circular-component 
representations of the field polarization are easily found as 
 ˆ ˆ( ) ( )

x y

R L R L

E E

E E j E E= + + −E x y
 

 (5.14) 

     
( )

x R L
y R L

E E E
E j E E

= +⇒ = −  (5.15) 

 
0.5( )
0.5( ).

R x y

L x y

E E jE
E E jE

= −
⇒

= +
 (5.16) 

 
4. Polarization Vector and Polarization Ratio of a Plane Wave 

 2 2ˆ ˆ ˆ ,Lyx j
L m x y

m m m

EE e E E E
E E E

δ= = + = +
Eρ x y  (5.17) 

The expression in (5.17) assumes a wave decomposition into linearly polarized 
(x and y) components, thereby the subscript L. Polarization vector in terms of 
RHCP and LHCP components is also used. The polarization vector defined in 
(5.17) takes the following specific forms in the cases of linearly, circularly and 
elliptically polarized waves. 

Case 1:  Linear polarization (the polarization vector is real-valued) 

 2 2ˆ ˆ ˆ ,yx
m x y

m m

EE E E E
E E

= ± = +ρ x y  (5.18) 

where xE  and yE  are real numbers. 
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The polarization ratio is the ratio of the phasors of the two orthogonal 
polarization components. In general, it is a complex number: 

Case 2: Circular polarization (the polarization vector is complex-valued) 

 ( )1ˆ ˆ ˆ , 2 2
2

L m x yj E E E= ± = =ρ x y  (5.19) 

 

 or
L

L
j

y y V
L L L

x x H

E E e Er r e r
E E E

δ
δ= = = =




 

 

 (5.20) 

Point of interest: In the case of circular-component representation, the 
polarization ratio is defined as 

 C Rj
C C

L

Er r e
E

δ= =






. (5.21) 

The circular polarization ratio Cr  is of particular interest since the axial ratio of 
the polarization ellipse AR can be expressed as 

 
1
1

C

C

rAR
r
+

=
−

. (5.22) 

Besides, its tilt angle with respect to the y (vertical) axis is simply 
 / 2V C nτ δ π= + , 0, 1,...n = ±  . (5.23) 

Comparing (5.10) and (5.23) readily shows the relation between the phase 
difference δC of the circular-component representation and the linear 
polarization ratio Lj

L Lr r e δ= : 

 
2

2arctan cos
1

L
C L

L

r
r

δ δ 
=  − 

. (5.24) 

We can calculate Cr  from the linear polarization ratio Lr  making use of (5.11) 
and (5.22): 

 
2 4 2

2 4 2

1 1 2 cos(2 )1
1 1 1 2 cos(2 )

LC L L L

C LL L L

r r rrAR
r r r r

δ
δ

+ + + ++
= =

− + − + +
. (5.25) 

Using (5.24) and (5.25) allows for the switching between the representation of 
the wave polarization in terms of linear and circular components. 
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5. Antenna Polarization 
The polarization of a transmitting antenna is the polarization of its 

radiated wave in the far zone. The polarization of a receiving antenna is the 
polarization of an incident plane wave, which, for a given power flux density, 
results in maximum available power at the antenna terminals.  

By convention, the antenna polarization is defined by the polarization 
vector of the wave it transmits. Therefore, the antenna polarization vector is 
determined according to the definition of antenna polarization in a transmitting 
mode. Notice that the polarization vector ˆ t

wρ  of a wave in the coordinate 
system of transmission (the wave moves away from the antenna at the origin, 
i.e., along r̂ ) is the conjugate of its polarization vector ˆ r

wρ  in the coordinate 
system of reception (the wave moves toward the antenna at the origin, i.e., 
along ˆ−r ): 
 ˆ ˆ( )r t

w w
∗=ρ ρ . (5.26) 

The conjugation is without importance for a linearly polarized wave since its 
polarization vector is real. It is, however, important in the cases of circularly 
and elliptically polarized waves. 

This is illustrated in the figure below with a RHCP wave. Let the coordinate 
triplet 1 2 3( , , )t t tx x x  represent the coordinate system of the transmitting antenna 
while 1 2 3( , , )r r rx x x  represents that of the receiving antenna. In antenna analysis, 
the plane of polarization is usually given in spherical coordinates by 

1 2 ˆ ˆˆ ˆ( , ) ( , )≡x x θ φ  and the third axis obeys 1 2 3ˆ ˆ ˆ× =x x x , i.e., 3 ˆˆ =x r . Since the 
transmitting and receiving antennas face each other, their coordinate systems 
are oriented so that 3 3ˆ ˆt r= −x x  (i.e., ˆ ˆr t= −r r ). If we align the axes 1ˆ tx  and 1ˆ rx , 
then 2 2ˆ ˆt r= −x x  must hold. This changes the sign of the respective (2nd) field 
vector component. Upon normalization, this results in a change of sign in the 
imaginary part of the wave polarization vector. 

Bearing in mind the definitions of antenna polarization in transmitting and 
receiving modes, we conclude that in a common coordinate system the 
transmitting-mode polarization vector of an antenna is the conjugate of its 
receiving-mode polarization vector. 
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3
ˆ ˆ t=k x

1 2
1ˆ ˆ ˆ( )
2

t t t
w j= −ρ x x

RHCP wave

1
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2
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3
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1
rx

2
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3
rx

3
ˆ ˆ r= −k x

1 2
1ˆ ˆ ˆ( )
2

r r r
w j= +ρ x x

0tω = 0tω =

/ 2tω π=/ 2tω π=

 
 

6. Polarization Loss Factor (Polarization Efficiency) 
Generally, the polarization of the receiving antenna is not the same as the 

polarization of the incident wave. This is called polarization mismatch. The 
polarization loss factor (PLF) characterizes the loss of EM power due to the 
polarization mismatch. The PLF is defined so that it attains a value of 1 (or 
100%, or 0 dB) if there is no polarization mismatch, i.e., the antenna receives 
the maximum possible power for the given incident power density. A PLF 
equal to 0 (−∞  dB) indicates complete polarization mismatch and inability to 
capture power from the incident wave. Thus, 
 0 PLF 1≤ ≤ . (5.27) 

Note that the polarization loss has nothing to do with dissipation. It can be 
viewed as a “missed opportunity” to capture as much power from the incident 
wave as possible. The polarization efficiency has the same meaning as PLF. 

Let us denote the polarization vector of a wave incident upon a receiving 
antenna as ˆ wρ . In the coordinate system where the receiving antenna is at the 
origin, this vector describes a wave propagating along ˆ−r . Assume also that 
the polarization vector of the wave that the receiving antenna would produce if 
it were to operate in transmitting mode is ˆ aρ . In the coordinate system where 
the receiving antenna is at the origin, this vector describes a wave propagating 
along ˆ+r . Then, the PLF is defined as 
 2ˆ ˆPLF | |w a= ⋅ρ ρ . (5.28) 
Note that if ˆ ˆw a

∗ =ρ ρ , i.e., the incident field is 
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 ˆi i
m aE ∗=E ρ , 

PLF = 1, and we obtain maximum possible received power at the antenna 
terminals. Remember that the transmitting-mode and receiving-mode 
polarization vectors of a wave a mutually conjugate? This means that ˆ a

∗ρ  is 
nothing but the wave the receiving antenna would generate if it were to 
transmit in the direction of the incident-wave propagation. Thus, the optimal 
polarization of the incident wave is the one that matches the polarization of the 
wave produced by the receiving antenna if it was the one launching the 
incident wave. 

Here are some simple examples:  
1) if ˆ ˆ ˆ ˆw a a

∗= = =ρ ρ ρ x , then PLF=1;  
2) if ˆ ˆw =ρ x  and ˆ ˆ ˆa a

∗= =ρ ρ y , then PLF=0;  
3) if ˆ ˆ ˆ ˆw a j= = +ρ ρ x y , then PLF=0; 
4) if ˆ ˆ ˆw j= +ρ x y  and ˆ ˆ ˆa j= −ρ x y  ( ˆ ˆw a

∗ =ρ ρ ), then PLF=1. 

 

 
[Balanis, 2nd ed.] 
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In a communication link, the PLF has to be expressed by the polarization 
vectors of the transmitting and receiving antennas, Txρ̂  and Rxρ̂ , respectively. 
Both of these are defined in the coordinate system of the respective antenna as 
the polarization of the transmitted wave. However, these two coordinate 
systems have their radial unit vectors pointing in opposite directions, i.e., 

Rx Txˆ ˆ= −r r  as illustrated in the figure below. Therefore, either Txρ̂  or Rxρ̂  has to 
be conjugated when calculating the PLF (it does not matter which one). For 
example, if the reference coordinate system is that of the receiving antenna, 
then 
 

2
Tx Rxˆ ˆPLF ∗= ⋅ρ ρ . (5.29) 

The expression 
2

Tx Rxˆ ˆPLF ∗= ⋅ρ ρ  is also correct. 

Txr̂ Rxr̂
Txθ̂

Txφ̂

Rxφ̂Rxθ̂

Txρ̂ Txˆ∗ρ
Rxρ̂Rxˆ∗ρ  

 
Examples 

Example 5.1.  The electric field of a linearly polarized EM wave is 
 ˆ ( , )i j z

mE x y e β−= ⋅E x . 
It is incident upon a linearly polarized receiving antenna, which would 
transmit the field  

 ˆ ˆ( ) j z
a e β= + ⋅E x y  

if it were to operate in a transmitting instead of receiving mode. Find the 
PLF. 

 
Notice that aE  propagates along z−  in accordance with the requirement 
that it represents a transmitted wave. 

21 1ˆ ˆ ˆPLF ( )
22

= ⋅ + =x x y  

[dB] 10PLF 10log 0.5 3= = −  dB 
 



 

Nikolova 2018 15 

Example 5.2.  A transmitting antenna produces a far-zone field, which is 
RH circularly polarized. This field impinges upon a receiving antenna, 
whose polarization (in transmitting mode) is also RH circular. Determine 
the PLF. 

 
Both antennas (the transmitting one and the receiving one) are RH 
circularly polarized in transmitting mode. Assume that a transmitting 
antenna is located at the center of a spherical coordinate system. The far-
zone field it would produce is described as 

ˆ ˆcos cos( / 2)far
mE t tω ω π = ⋅ + ⋅ − E θ φ . 

This is a RHCP field with respect to the outward radial direction r̂ . Its 
polarization vector is 

Tx
ˆ ˆˆ

2
j−

=
θ φρ . 

This is exactly the polarization vector of the transmitting antenna in its 
own coordinate system. 
 

x

y

z

r

ϕ

θ Eθ

Eϕ

 
 
Since the receiving antenna is also RHCP, its polarization vector is 

 Rx
ˆ ˆˆ

2
j−

=
θ φρ . 

The PLF is calculated as per (5.29): 
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2
* 2
Tx Rx

ˆ ˆˆ ˆ| ( ) ( ) |ˆ ˆPLF | | 1
4

j j+ ⋅ −
= ⋅ = =

θ φ θ φρ ρ , 

[dB] 10PLF 10log 1 0= = . 
There is no polarization loss. 

 
 
Exercise: Show that an antenna of RH circular polarization (in transmitting 
mode) cannot receive LH circularly polarized incident wave (or a wave 
emitted by a left-circularly polarized antenna). 
 
 
 

Appendix I 
Find the tilt angle τ , the length of the major axis OA, and the length of the 
minor axis OB of the ellipse described by the equation: 

22
2 ( ) ( )( ) ( )sin 2 cosy yx x

x x y y

e t e te t e t
E E E E

δ δ
      = − +             

. 

 

( )xe t

( )ye t

major axis (2
 OA)

m
inor axis (2 OB)

τ

xE

yE

E

ω
 

 
Equation (A-1) can be written as 

2 2 1a x b xy c y⋅ − ⋅ + ⋅ = , 
where 

( )xx e t=  and ( )yy e t=  are the coordinates of a point of the ellipse 
centered in the xy  plane; 

(A-1) 

(A-2) 
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2 2
1

sinx
a

E δ
= ; 

2
2cos

sinx y
b

E E
δ
δ

= ; 

2 2
1

siny
c

E δ
= . 

After dividing both sides of (A-2) by ( )xy , one obtains 
1x ya b c

y x xy
− + = . 

Introducing ( )
( )

y

x

e ty
x e t

ξ = = , one obtains that 

2
2

2
2 2 2 2 2

2

1

1( ) (1 ) .

x
c b a

x y x
c b a

ξ ξ
ξρ ξ ξ

ξ ξ

=
− +

+
⇒ = + = + =

− +

 

Here, ρ  is the distance from the center of the coordinate system to the point on 
the ellipse. We want to know at what values of ξ  the maximum and the 
minimum of ρ  occur ( minξ , maxξ ). This will produce the tilt angle τ . We also 
want to know the values of maxρ  (major axis) and minρ  (minor axis). Then, we 
have to solve 

2( ) 0d
d
ρ
ξ

= , or 

2
m m

2( ) 1 0a c
b

ξ ξ−
− − = , where m min max,ξ ξ ξ≡ . 

(A-5) is solved for the angle τ, which relates to ξmax as 
( )max maxtan /y xξ τ= = . 

Substituting (A-6) in (A-5) yields: 
2sin sin2 1 0

cos cos
Cτ τ

τ τ
   − − =   
   

 

where  

(A-3) 

(A-4) 

(A-5) 

(A-6) 

(A-7) 
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2 2

2 cos
y x

x y

E Ea cC
b E E δ

−−
= = . 

Multiplying both sides of (A-7) by 2cos τ  and re-arranging results in 
2 2

cos(2 ) sin(2 )
cos sin 2 sin cos 0

C
C

τ τ

τ τ τ τ− + ⋅ =
 

. 

Thus, the solution of (A-7) is  
tan(2 ) 1 / Cτ = −  

or 

1 2 12 2

2 cos1 arctan ;
2 2

x y

x y

E E
E E

δ πτ τ τ
 

= = + − 
. 

The angles τ1 and τ2 are the angles between the major and minor axes with the x 
axis. Substituting 1τ  and 2τ  back in ρ  (see A-4) yields the expressions for OA 
and OB. 

(A-8) 
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