Lecture 9 Analog and Digital I/Q Modulation

Analog I/Q Modulation

- Time Domain View
- Polar View
- Frequency Domain View

Digital I/Q Modulation

- Phase Shift Keying
- Constellations

Coherent Detection

 Requires receiver local oscillator to be accurately aligned in phase and frequency to carrier sine wave

Impact of Phase Misalignment in Receiver Local Oscillator

 Worst case is when receiver LO and carrier frequency are phase shifted 90 degrees with respect to each other

Analog I/Q Modulation

Baseband Input

- Analog signals take on a continuous range of values (as viewed in the time domain)
- I/Q signals are orthogonal and therefore can be transmitted simultaneously and fully recovered

Polar View of Analog I/Q Modulation

$$i_t(t) = i(t)\cos(2\pi f_o t + 0^\circ)$$

$$q_t(t) = q(t)\cos(2\pi f_o t + 90^\circ) = q(t)\sin(2\pi f_o t)$$

$$y_t(t) = \sqrt{i^2(t) + q^2(t)} \cos(2\pi f_o t + \theta(t))$$

where
$$\theta(t) = \tan^{-1} q(t) / i(t)$$

$$-180^{\circ} < \theta < 180^{\circ}$$

Polar View of Analog I/Q Modulation (Con't)

- Polar View shows amplitude and phase of $i_t(t)$, $q_t(t)$ and $y_t(t)$ combined signal for transmission at a given frequency f.
- Magnitude of i(t) and q(t) vary with time, representing information in the analog domain.

Frequency Domain View of Analog I/Q Modulation

- Takes advantage of coherent receiver's sensitivity to phase alignment with transmitter local oscillator
 - We have two orthogonal transmission channels (I and Q) available to us
 - Transmit two independent baseband signals (I and Q) with two sine waves in quadrature at transmitter

Analog I/Q Modulation-Transceiver

Baseband Input

Receiver Output

- I/Q signals take on a continuous range of values (as viewed in the time domain)
- Used for AM/FM radios, television (non-HDTV), and the first cell phones
- Newer systems typically employ digital modulation instead

I/Q Transceiver Frequency Domain View

- Demodulate using two sine waves in quadrature at receiver
 - Must align receiver LO signals in frequency and phase to transmitter LO signals
 - Proper alignment allows I and Q signals to be recovered as shown

Impact of 90 Degree Phase Misalignment

- I and Q channels are swapped at receiver if its LO signal is 90 degrees out of phase with transmitter
 - However, no information is lost!
 - Can use baseband signal processing to extract I/Q signals despite phase offset between transmitter and receiver

Digital I/Q Modulation

Baseband Input

 I/Q signals take on discrete values at discrete time instants corresponding to digital data

Polar View of Digital I/Q Modulation

Polar View shows amplitude and phase of $i_t(t)$, $q_t(t)$ and $y_t(t)$ combined signal for transmission at a given frequency f.

i(t) and q(t) have discrete values. In this case, binary values. $\pm i_{o}$ $\pm q_{o}$

$$y_t(t) = \sqrt{i_o^2 + q_o^2} \cos(2\pi f_o t + \theta(t))$$

$$where \ \theta(t) = \tan^{-1} \frac{\pm q_o}{\pm i_o}$$

Polar View of Digital I/Q Modulation (cont'd)

 $\theta(t)$ can have 4 values

Transmission signal is sine wave at frequency f_0 with information encoded in discrete values of amplitude and phase.

Digital Modulation: 16-QAM

Baseband Input

- I/Q signals take on discrete values at discrete time instants corresponding to digital data
- I/Q signals may be binary or multi-bit
 - Multi-bit shown above (4 levels each)

Constellation Diagram:16-QAM

- We can view I/Q values at sample instants on a two-dimensional coordinate system
- Decision boundaries mark up regions corresponding to different data values
- Gray coding used to minimize number of bit errors that occur if wrong decisions made due to noise

Advantages of Digital Modulation

- Allows information to be "packetized"
 - Can compress information in time and efficiently send as packets through network
 - In contrast, analog modulation requires "circuit-switched" connections that are continuously available
 - Inefficient use of radio channel if there is "dead time" in information flow
- Allows error correction to be achieved
 - Less sensitivity to radio channel imperfections
- Enables compression of information
 - More efficient use of channel
- Supports a wide variety of information content
 - Voice, text and email messages, video can all be represented as digital bit streams