Physics of Free Fall

[Introduction]

Application: skydiving, parachute jump, air dispensing of flyers (pamplets).

Example: On 14 October 2012, Austrian skydiver Felix Baumgartner landed in eastern New Mexico after jumping from a world record of 128,097 feet (39.045 km), which he climbed to with a helium balloon. Maximum speed = 372.8 m/s and time taken = 4'19" = 259 s (including parachute fall time). He wore a pressured space suit.; Without air drag, the fall time would be 89.2 seconds with a final speed of 874.8 m/s.

 

[Theory]

Free-fall without air drag:

Force acting on a free-falling object

    : downward force on a free-falling object

    W = mg : weight (N), g = 9.8 m2/s (gravity)

Drag equation:

    : (air) drag (force) (N). Lord Rayleigh's drag equation. For an object moving through a fluid at relatively large velocity

        (i.e., high Reynolds number, R¡©e > 1000)

    Cd: drag coefficient, dimensionless. 0.25–0.45 for a car. Depends on the Reynolds number. It varies with air density and the object

        velocity.

    ¥ñ: air density (kg/m3)

    v: the object's free-fall velocity (m/s)

    A: the object's frontal area (m2). Reference area = area of the orthographic projection of the object.

    For low Reynolds numbers, the drag is proportional to the object velocity.

    Reynolds number: a dimensionless number that gives a measure of the ratio of inertial force to viscous forces and consequently

        quantifies the relative importance of these two types of forces for given flow conditions.

Equilibrium velocity (= terminal velocity):

Equation of motion: assuming constant air density.

Example: 1.225 kg/m3 at sea level and at 15¡ÆC. We take 0.6 kg/m3. Cd = 0.5, W= 100 kg, A= 0.1 m2.

P. A. Tipler, College Physics, New York: Worth, 1987, p.105: "For a skydiver with parachute closed, the terminal velocity is about 200 km/m." 56 m/s.

 

Troposphere: density and pressure model. 1976 International Standard Atmosphere (ISA) model

H(km) = 44.3308–42.2665 ¢¥ D0.234969; D air density in kg/m3.

H(km) = 44.3308–4.94654 ¢¥ P0.190263; P air pressure in Pa.

 

earth's_surface_to_outer_region.jpg

http://okfirst.mesonet.org/train/meteorology/graphics/VertTP.gif

Atmosphere Temperature Changes http://www.windows2universe.org/earth/images/profile.jpg

 

http://ars.sciencedirect.com/content/image/1-s2.0-S0032063305001479-gr2.jpg http://www.pilotfriend.com/training/flight_training/met/images/17.gif

 

Air pressure:

http://www.npl.co.uk/upload/img_400/Altitude_vs_Pressure.gif

1976 ISA Model: 0 ¡Â h ¡Â 11,000

1. Temperature

   

    Troposphere: 10¡ÆC to –60¡ÆC linearly decrease.

    Tropopause: –60¡ÆC, 11,000 ¡Â h (km) ¡Â 20,000

    Stratosphere: –60¡ÆC to 0¡ÆC linearly increase. 20,000 ¡Â h ¡Â 50,000

       

    StratopauseMesopause: -0¡ÆC, 50,000 ¡Â h ¡Â 55

    Mesosphere: 0¡ÆC to –90¡ÆC, 55 ¡Â h ¡Â 85

       

    Mesopause: –90¡ÆC, 85 ¡Â h ¡Â 90

    Thermosphere: http://www.windows2universe.org/earth/Atmosphere/thermosphere_temperature.html&edu=elem 

        90¡ÆC to 80¡ÆC , 90 ¡Â h ¡Â 100

        80¡ÆC to 175¡ÆC, 100 ¡Â h ¡Â 110

        Solar max: day = 1055¡ÆC, night = 825¡ÆC

        Solar min: day = 545¡ÆC, night = 315¡ÆC

        11-year sun spot cycle

    http://universalcurrents.files.wordpress.com/2010/07/apstar07.jpg

http://www.colinandrews.net/images/NOAA-SunspotsGraph.gif

 

24-hour temperature graph

http://mesowest.utah.edu/cgi-bin/droman/meso_table_chart.cgi?stn=D4294&unit=0&hours=24&day1=0&month1=&year1=2012&hour1=00&windred=&time=LOCAL&var=TMPF&vnamev=Temperature&stationname=DW4294%20Morehead%20City&vlabel=%C2%B0%20F

24 Hour External Temperature Graph

http://www.stocktoninfrared.com/wp-content/uploads/2007/10/image005.jpg

http://www.yaz-yarkova.dk/temperatup.png

http://www.skepticalscience.com/pics/figure3.jpg

http://www.cnx-software.com/wp-content/uploads/2011/03/temperature_profile_24_hour_23-24_March_2011_Chiangmai.png

http://www.ldeo.columbia.edu/~kastens/curriculum/BRF/orientation/realtime/temp.gif

http://www.ldeo.columbia.edu/~kastens/curriculum/BRF/orientation/realtime/rel_hum.gif

Beta distribution function:

 

Diurnal temperature model:

Cheongju City (1981-2010) average: min temp./max. temp./time of max. temp

Jan: -6.9/2.9/15:00; F -9/2 M -8/4

Feb: -4.6/6.0/15:00; F -6/6 M -4/8

Mar: 0.2/11.9; F -2/11 M 2/15

Apr: 6.1/19.5; F 5/15

May: 12.3/24.4; F 11/23

Jun: 17.6/27.9; F 16/27

Jul: 21.8/29.8; F 21/28

Aug: 22.0/30.5; F 21/29

Sep: 16.2/26.3

    2.5, 3.5, 3.0

Oct: 8.5/20.7

Nov: 1.7/12.7

Dec: -4.3/5.6; F L-9/2

 

Program: year, moth, day, time, solar position       

Seasonal Averages

 

 

,000

2. Pressure

   

    P: pressure at the altitude of h (N/m2 = hPa)

    P11 = 226.32 hPa (pressure at the toropause)

    T11 = 216.65 K (kelvin temperature at the toropause)

    h: height above the sea level (m)

    h11 = 11,000 (m)

3. Air density

    : air density (kg/m3)

R = 287.04 m2/Ks2

 

Air density

http://scienceofdoom.files.wordpress.com/2011/02/rte-density-vs-height.png

Exact solution: use numerical methods with exact parameter values.

 

[Numerical Solution]

To be added.

 

[Computer Code]

To be added.

 

[References]

Kiusalass, J., Numerical Methods in Engineering with Python, 2nd Ed., Cambridge U. Press, 2010.

Meade, D. B. and A. A. Struthers, "Differential equations in the new millennium: the parachute problem," In. J. Eng. Ed., Vol. 15, No. 6,

    pp. 417–424, 1999; a UK journal.