Physics
of Free Fall
[Introduction]
Application: skydiving, parachute jump, air dispensing of flyers (pamplets).
Example: On 14 October 2012, Austrian skydiver Felix Baumgartner landed in eastern New Mexico after jumping from a world record of 128,097 feet (39.045 km), which he climbed to with a helium balloon. Maximum speed = 372.8 m/s and time taken = 4'19" = 259 s (including parachute fall time). He wore a pressured space suit.; Without air drag, the fall time would be 89.2 seconds with a final speed of 874.8 m/s.
[Theory]
Free-fall without air drag:
Force acting on a free-falling object
: downward force on a free-falling object
W = mg : weight (N), g = 9.8 m2/s (gravity)
Drag equation:
: (air) drag (force) (N). Lord Rayleigh's drag equation. For an object moving through a fluid at relatively large velocity
(i.e., high Reynolds number, R¡©e > 1000)
Cd: drag coefficient, dimensionless. 0.25–0.45 for a car. Depends on the Reynolds number. It varies with air density and the object
velocity.
¥ñ: air density (kg/m3)
v: the object's free-fall velocity (m/s)
A: the object's frontal area (m2). Reference area = area of the orthographic projection of the object.
For low Reynolds numbers, the drag is proportional to the object velocity.
Reynolds number: a dimensionless number that gives a measure of the ratio of inertial force to viscous forces and consequently
quantifies the relative importance of these two types of forces for given flow conditions.
Equilibrium velocity (= terminal velocity):
Equation of motion: assuming constant air density.
Example: 1.225 kg/m3 at sea level and at 15¡ÆC. We take 0.6 kg/m3. Cd = 0.5, W= 100 kg, A= 0.1 m2.
P. A. Tipler, College Physics, New York: Worth, 1987, p.105: "For a skydiver with parachute closed, the terminal velocity is about 200 km/m." 56 m/s.
Troposphere: density and pressure model. 1976 International Standard Atmosphere (ISA) model
H(km) = 44.3308–42.2665 ¢¥ D0.234969; D air density in kg/m3.
H(km) = 44.3308–4.94654 ¢¥ P0.190263; P air pressure in Pa.
Air pressure:
1976 ISA Model: 0 ¡Â h ¡Â 11,000
1. Temperature
Troposphere: 10¡ÆC to –60¡ÆC linearly decrease.
Tropopause: –60¡ÆC, 11,000
¡Â h (km) ¡Â 20,000
Stratosphere:
–60¡ÆC to 0¡ÆC linearly
increase. 20,000 ¡Â h ¡Â 50,000
StratopauseMesopause: -0¡ÆC, 50,000 ¡Â h ¡Â 55
Mesosphere:
0¡ÆC to –90¡ÆC, 55 ¡Â h ¡Â 85
Mesopause: –90¡ÆC, 85 ¡Â h ¡Â 90
Thermosphere:
http://www.windows2universe.org/earth/Atmosphere/thermosphere_temperature.html&edu=elem
–90¡ÆC to –80¡ÆC , 90 ¡Â h ¡Â 100
–80¡ÆC to 175¡ÆC, 100 ¡Â h ¡Â 110
Solar
max: day = 1055¡ÆC, night = 825¡ÆC
Solar
min: day = 545¡ÆC, night = 315¡ÆC
11-year
sun spot cycle
24-hour temperature graph
Beta distribution function:
Diurnal temperature model:
Cheongju City (1981-2010) average: min temp./max. temp./time of max. temp
Jan: -6.9/2.9/15:00; F -9/2 M -8/4
Feb: -4.6/6.0/15:00; F -6/6 M -4/8
Mar: 0.2/11.9; F -2/11 M 2/15
Apr: 6.1/19.5; F 5/15
May: 12.3/24.4; F 11/23
Jun: 17.6/27.9; F 16/27
Jul: 21.8/29.8; F 21/28
Aug: 22.0/30.5; F 21/29
Sep: 16.2/26.3
2.5, 3.5, 3.0
Oct: 8.5/20.7
Nov: 1.7/12.7
Dec: -4.3/5.6; F L-9/2
Program: year, moth, day, time, solar position
,000
2. Pressure
P: pressure at the altitude of h (N/m2 = hPa)
P11 = 226.32 hPa (pressure at the toropause)
T11 = 216.65 K (kelvin temperature at the toropause)
h: height above the sea level (m)
h11 = 11,000 (m)
3. Air density
: air density (kg/m3)
R = 287.04 m2/Ks2
Air density
Exact solution: use numerical methods with exact parameter values.
[Numerical
Solution]
To be added.
[Computer
Code]
To be added.
[References]
Kiusalass, J., Numerical Methods in Engineering with Python, 2nd Ed., Cambridge U. Press, 2010.
Meade, D. B. and A. A. Struthers, "Differential equations in the new millennium: the parachute problem," In. J. Eng. Ed., Vol. 15, No. 6,
pp. 417–424, 1999; a UK journal.