Broadband OMT Design
2009
Applied Electromagnetics Laboratory, Chungbuk University

CONTENTS

Chapter 1. Design Requirements
Chapter 2. Survey of Broadband OMT Structures
Chapter 3. OMT Design
Chapter 4. OMT Fabrication
Chapter 5. OMT Measurements
Appendix
References
Chapter 1
Design Requirements

1.1 Design Requirements

- Operating frequency: 70-87GHz (21.6%)
- Insertion loss: less than 0.5dB
- Isolation: greater than 30dB
- Reflection: less than -20dB

1.2 Commercial Products

○ Quinstar 사에서는 K 대역에서부터 W 대역까지 full band OMT 제품(QOT series)을 판매하고 있음.
○ Radiometer Physics 사에서는 150GHz 대역까지 대역폭 2%인 OMT 제품을 판매하고 있음.
○ Cernex 사에서는 WR-90 (최대 12.4GHz) 도파관 대역에서부터 WR-8 (최대 140GHz) 도파관 대역까지 대역폭 3%인 OMT를 판매하고 있음.
○ Millitech 사에서는 325GHz 대역까지 동작하며 도파관 사용 주파수 대역의 50% 대역폭을 가지는 OMT를 판매하고 있음.
○ 미국 국립전파천문대에서는 밀리미터파 및 서브밀리미터파 대역 전파원기능을 위한 대역 OMT를 개발하고 있음.
Chapter 2
Survey of Broadband OMT Structures

2.1 Type 1 OMT [1]

1) Structure
- Common port: square guide
- Vertical polarization: stepped transition, rectangular guide
- Horizontal polarization: slot coupled, rectangular guide

![Type 1 OMT](image)

Fig. 2.1.1 Type 1 OMT.

2) Performance
-20dB reflection bandwidth: 10.7-13.36GHz (22%)

![Type 1 OMT theoretical reflection coefficient](image)

Fig. 2.1.2 Type 1 OMT theoretical reflection coefficient: solid line = vert. pol., dashed line = horiz. pol.

2.2 Type 2 OMT [1]

1) Structure
- Common port: square or circular guide
- Horizontal polarization: slot coupled, short-circuited by a thin septum
- Vertical polarization: placed in series with horiz. pol. port, slot coupled, short-circuited by a thin septum
2) Performance
-20dB reflection bandwidth: 9.95-13.18 (27.7%)
Isolation greater than 40dB

2.3 Type 3 OMT [1]-[5]
1) Basic structure [1]
- Common port: square
- Horizontal polarization: short-circuited by tapered septum, symmetric sidewall slot coupling, tuning post in the coupling slot, two arms are joined by Y-junction, rectangular guide
- Vertical polarization: stepped height transition, rectangular guide

Fig. 2.3.1 Polarization separation in type 3 OMT.

2) Performance
2.1) Design example 1 [1]

o. Structure

Fig. 2.3.2 Fabricated products of type 3 OMT.

o. Performance

20dB return loss bandwidth: 3.5 or lower to 6.5 or greater (greater than 57.4%)
Isolation greater than 50dB
Fig. 2.3.3 Measured performance of a C-band OMT of type 3. (a) Vert. pol. port reflection and (b) isolation.

2.2) Design example 2 [2]

o. Structure

![Type 3 OMT in WR-10](image)

Fig. 2.3.4 Type 3 OMT in WR-10.

o. Performance

- 20dB return loss bandwidth: 75.5-98.5GHz (26.4%)
- Insertion loss: < 0.4dB (vert. pol.), < 0.2dB (horiz. pol.)
- Isolation: > 30 dB
2.3) Design example 3 [3]

o. Structure

Fig. 2.3.6 Type 3 OMT in WR-42.

o. Performance

20dB return loss bandwidth: 16.6-27.3 (48.7%)

Insertion loss: < 0.1dB (vert. pol.), <0.15dB (horiz. pol.)
Isolation: > 40dB

Fig. 2.3.7 Performance of type 3 OMT in WR-42.

2.4) Design example 4 [4]

o. Structure

Fig. 2.3.8 Split-block type 3 OMT in WR-10. Left: split-block fabrication, Right: septum.
o. Performance

15dB return loss bandwidth: 75-110GHz (37.8%)

Insertion loss: < 0.3dB (both pol.)

Isolation: not given

Fig. 2.3.9 Performance of split-block type 3 OMT in WR-10.

2.5) Design example 5 [4]

o. Structure

Fig. 2.3.10 Type 3 OMT for 250GHz band.
2.6) Design example 6 [5]

o. Structure

Fig. 2.3.12 Type 3 OMT for Ku-band.

o. Performance

Fig. 2.3.11 Theoretical performance of 250GHz OMT.

Performance

20dB return loss bandwidth: 191-284GHz (39.2%)
Fig. 2.3.13 Performance of Ku-band OMT.

(a) Test junction

Fig. 2.3.14 Test junction for Ku-band OMT.

(b) Test junction

Fig. 16. Test junction

(a) Performance of test junction for Ku-band OMT.

(b)
2.4 Type 4 OMT [6]

o. Structure

Fig. 2.3.16 Type 4 OMT.

Fig. 2.3.17 Reflection and transmission coefficients of type 4 OMT.

Fig. 2.3.18 Isolation performance of type 4 OMT.
Chapter 3
OMT Design

3.1 Introduction

- Tools used
 - Microwave Studio (MWS) v. 2009: easy to use and fast
 - HFSS: 3D model input inconvenient, result display requires some labor, boundary setting requires effort, used only for confirming Microwave Studio results.

- Considerations in simulation
 - Initial dimension taken from literature: dimensions directly specified, measure approximate dimension from photos
 - Modify initial structures for fabrication. Rounded corners, exclusion of too thin structures, etc.
 - Optimization from initial dimension: use parameter sweep in MWS, use normal mesh
 - Mesh refinement: only after final optimized dimensions are obtained. to obtain more accurate results
 - Even with best efforts, the final design requires some modification for fabrication especially when the structure is very complicated.
 - Optimize with modified structure
 - Increased insertion loss in fabricated devices is difficult to simulate. Use an imperfect conductor instead of perfect conductor. Conductivity is reduced up to 4 times to include the effect of surface roughness. Losses due to imperfect contact in devices fabricated by split-block method require some ingenuity.
3.2 OMT Design

1) Design of Type 4 OMT (WR-12)

o. Structure

- Common port: circular wg diameter 3.00mm
- Vert. & horiz. port: WR-12
- Stepped transitions are avoided as much as possible
o. Performance

- Reflection less than -20dB at 67.5-90.0GHz
- Isolation greater than 60dB at 67.5-90.0GHz
o. Further work

- Check fabrication difficulties. Modify structure if necessary to ease the fabrication.

- Stepped transitions can be more suitable for fabrication! We have to consult a fabrication specialist.

- Come up with the final design. Refine mesh and get more accurate simulation results.

- Fabricate and measure.

- Prepare test accessories:
 - Test fixture: 3.00-diameter circular guide to WR-12 transition.
 - WR-12 calibration kit.
 - Matched load for 3.00-diameter circular guide.
2) Design of Type 4 OMT (WR-10)

- Structure
 - Common port: circular wg diameter 2.20mm
 - Vert. & horiz. port: WR-10
 - Stepped transitions are avoided as much as possible
o. Performance

- Reflection less than -20dB at 85.0-107.0GHz

- Isolation greater than 60dB at 67.5-90.0GHz
<Results with normal mesh size>

<Results with fine mesh size>
Results with normal mesh size

Results with fine mesh size
Chapter 4
OMT Fabrication

4.1 Summary

o. Fabrication methods
 - Split-block NC machining
 - Injection molding (metal casting)
 - Micro-machining

o. Considerations in fabrication
 - Dimensional accuracy
 - Joining accuracy: guide pin
 - Surface finish
 - Plating: gold, silver
 - Reduction of loss: contacting surface geometry in split-block modules

4.2 Fabrication Examples

1) Example 1 - ALMA 84-116GHz OMT

2) Example 2 - ALMA 211-275GHz OMT
3) Fabrication example 3
Peverini, IEEE, 2006

Fig. 2. Three-dimensional view of the OMT architecture described in the text. (a) Circular-to-square waveguide transition. (b) V-coupling structure. (c) Polarization discriminator. (d) H-coupling structure. (e) and (f) C-shaped junctions. (g) and (h) Rectangular waveguide transformers. (i) and (l) 45° rectangular waveguide twists.
References

